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A B S T R A C T

In many practical fluid dynamics experiments, measuring variables such as velocity and pressure is possible
only at a limited number of sensor locations, for a few two-dimensional planes, or for a small 3D domain
in the flow. However, knowledge of the full fields is necessary to understand the dynamics of many flows.
Deep learning reconstruction of full flow fields from sparse measurements has recently garnered significant
research interest, as a way of overcoming this limitation. This task is referred to as the flow reconstruction (FR)
task. In the present study, we propose a convolutional autoencoder based neural network model, dubbed FR3D,
which enables FR to be carried out for three-dimensional flows around extruded 3D objects with different cross-
sections. An innovative mapping approach, whereby multiple fluid domains are mapped to an annulus, enables
FR3D to generalize its performance to objects not encountered during training. We conclusively demonstrate
this generalization capability using a dataset composed of 80 training and 20 testing geometries, all randomly
generated. We show that the FR3D model reconstructs pressure and velocity components with a few percentage
points of error. Additionally, using these predictions, we accurately estimate the Q-criterion fields as well lift
and drag forces on the geometries.
. Introduction and related work

Flow reconstruction (FR) involves the prediction of dense fields such
s velocity based on sparse measurements. Since typical experiments
n fluids involve only point measurements of the flow via simple and
nexpensive methods such as pitot tubes, FR techniques can provide re-
earchers additional insight into flows when more advanced techniques
uch as particle image velocimetry (PIV) are not available.

Various statistical tools have been applied to FR such as linear
tochastic estimation (LSE) (Bonnet et al., 1994), gappy proper or-
hogonal decomposition (gappy POD) (Willcox, 2006), extended proper
rthogonal decomposition (EPOD) (Borée, 2003), and sparse represen-
ation (Callaham et al., 2019). Though these techniques are time-tested
nd have been applied in practical experiments, for instance to estimate
nd control the flow in a backward-facing step case via LSE (Taylor and
lauser, 2004), their linear nature limit their capability to deal with
omplex flows.

Neural networks (NNs), owing to their universal approximation
apabilities (Funahashi, 1989), are capable of learning arbitrary non-
inear and high-dimensional relationships in datasets. This capability

∗ Corresponding author.
E-mail address: aligirayhan.ozbay14@imperial.ac.uk (A.G. Özbay).

makes them very attractive for FR tasks. As a result, the recent explo-
sion of interest in NNs – enabled by substantial increases in computing
power, theoretical advances, and the availability of open-source deep
learning software – has coincided with a shift towards NN-based FR,
and substantial strides were made with the application of NNs to the
field. Notably, Erichson et al. (2020) produced a seminal study explor-
ing the usage of neural networks to reconstruct flows past cylinders.
A number of works followed Erichson et al. a selection of which are
presented: Fukami et al. (2020) demonstrated that NN-based methods
can outperform linear FR methods for the reconstruction of flows
past cylinders and flapped airfoils, and also coupled NN-based FR
with Voronoi tessellations to achieve flexibility in terms of the sen-
sor setup (Fukami et al., 2021). Sun and Wang (2020) investigated
the application of physics-informed Bayesian NNs in FR, demonstrat-
ing high robustness to noise when reconstructing flows in simulated
vascular structures. Dubois et al. (2022) extended FR to variational
autoencoder architectures. Kumar et al. (2021) developed a recurrent
NN architecture to carry out FR with extremely sparse sensor setups.
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Xu et al. (2023) considered the usage of physics-informed loss functions
to train FR models using gappy data. He et al. (2022) explored the
usage of graph attention NNs to reconstruct flows past cylinders. Carter
et al. (2021) investigated the usage of an NN-based FR model on
experimental data of flow past an airfoil. Applications outside typical
wind tunnel-like scenarios, such as in porous media (Akeweje et al.,
2023) or the reconstruction of atmospheric flows based on satellite
imagery (Schweri et al., 2021), have also been developed.

However, the applicability of even these recent approaches to prac-
tical scenarios is limited. The first obstacle is tackling multi-geometry
FR. Even recently published works typically investigate FR for a single
geometry only (often a 2D circular cylinder), and as a result the models
used in such works must be re-trained for every case investigated; a
model trained on e.g. a circular cylinder will not work well for a square
cylinder. This necessitates laborious data collection and a computation-
ally expensive training process. To overcome this limitation, a growing
body of works have investigated 2D multi-geometry FR using tech-
niques such as graph convolutional neural networks (Chen et al., 2021;
Liu et al., 2022; Duthé et al., 2023) and conformal mappings (Özbay
and Laizet, 2022a).

The second challenge pertains to the reconstruction of three-
dimensional flows, regarding which relatively few works exist com-
pared to the reconstruction of two-dimensional flows. Three dimen-
sional flows exhibit substantially more complicated dynamics than
two-dimensional flows (Verma et al., 2018), and require much greater
computing power to process. Despite this, a growing body of works is
tackling the challenge of 3D FR. Particularly, reconstruction of 3D flows
past cylinders (Laima et al., 2023) and of flows concerning domains
without embedded objects such as channel flows (Güemes et al., 2021;
Guastoni et al., 2021) have been investigated recently. A number of
studies have also investigated the reconstruction of 2D slices of flows
past square cylinders (Nakamura and Fukagata, 2022; Matsuo et al.,
2021) and vice versa (Pérez et al., 2020) (i.e. reconstruction of 3D fields
from 2D slices).

In this work, we introduce a method enabling the reconstruction
of unsteady three-dimensional flows around objects with arbitrarily
shaped cross-sections. This is achieved via an autoencoder-based con-
volutional neural network architecture which incorporates conformal
mappings to achieve geometry invariance (Özbay and Laizet, 2022a,b).
In our previous study (Özbay and Laizet, 2022a,b), we have shown that
it is possible to reconstruct dense contemporaneous or future vorticity
fields of two-dimensional flows past various objects from current sparse
sensor measurements, even for objects not encountered during training.
To achieve optimal performance in these tasks, Schwarz–Christoffel
mappings were used for choosing the sampling points of the dense
fields. The results showed that the mapping aided approach provides
a substantial boost in accuracy for all model and sensor setup con-
figurations, enabling percentage errors under 3%, 10% and 30% for
reconstructions of pressure, velocity and vorticity fields, respectively.

For the present study, we reconstruct unsteady three-dimensional
flows around bluff bodies with periodic spanwise boundary conditions
at Re = 500 (based on the freestream velocity and the characteristic
length of the bluff body). Additionally, we use these reconstructions to
accurately predict the aerodynamic forces experienced by the investi-
gated geometries as well as the Q-criterion (Jeong and Hussain, 1995),
which defines vortices as areas where the vorticity magnitude is greater
than the magnitude of the rate of strain.

The paper is organized as follows: first, in Section 2, we detail
the procedure used to generate our dataset and the experiments to be
carried out using the dataset. Next, in Section 3, we expound upon the
FR3D model architecture and its training procedure. Subsequently, in
Section 4, we display the performance of the FR3D model. Finally, in
Section 5, we summarize the results, and identify avenues for further
2

research in 3D flow reconstruction.
2. Data and experimental setup

2.1. Geometries, meshing and flow simulations

Our dataset consists of 100 geometries 𝐺𝑖, 𝑖 ∈ [0, 99], randomly
generated using a method based on Bezier curves by Viquerat and
Hachem (2020). Each geometry uses 4 control points for the curves,
chosen randomly in a square domain with characteristic length 𝐿𝑚,
which enables the generation of convex as well as concave shapes.
Fig. 1 showcases the diversity of the geometries created in this manner,
including airfoil-like cross-sections, objects with concavities and objects
with sharp corners.

Each geometry 𝐺𝑖 was placed in a 40𝐿𝑚∕7×40𝐿𝑚∕7 square domain,
extruded for 20𝐿𝑚∕7 in the spanwise direction. The domains were
meshed using an automated procedure with c. 30,000 hexahedral and
triangular prism elements each, with wake refinement applied. The
flows were computed at a Reynolds number equal to Re = 𝑢∞𝐿𝑚∕𝜈
= 500 using the PyFR solver (Witherden et al., 2014) (𝑢∞ is the
free stream velocity and 𝜈 is the viscosity of the flow). This solver is
a flux reconstruction (Huynh, 2007) based advection–diffusion equa-
tion solver using the artificial compressibility approach to solve the
incompressible Navier–Stokes equations. It was chosen for its Python
interface and GPU acceleration capabilities. 800 snapshots between
𝜏∗ = 5.71 and 𝜏∗ = 17.14 (when the flow is fully established) were
recorded per geometry, where 𝜏∗ = 𝑢∞𝜏∕𝐿𝑚 is the time normalized by
the large eddy turnover time 𝐿𝑚∕𝑢∞.

The snapshots collected were split into training and validation
datasets, with all snapshots belonging to 20 randomly chosen geome-
tries constituting the validation set, and the rest serving as the training
set. This setup ensures that our model must have reasonable generaliza-
tion performance to perform well on the validation set, as learning the
reduced-order dynamics of specific flows (as in e.g. the Dynamic Mode
Decomposition Schmid, 2010) is not sufficient to reconstruct flows past
unseen geometries.

2.2. Flow validation

The solver settings used to generate the flow dataset were validated
using the canonical case of the flow past a cylinder with diameter 𝐷
in a spanwise periodic domain. Two quantities were compared against
reference data by Mittal et al. (1997) at Re = 300, both averaged in the
spanwise direction:

• ⟨𝑢⟩ − 𝑢∞: Time averaged 𝑢-velocity deficit
• ⟨𝑢′𝑢′⟩∕𝑢2∞: Streamwise-component of the Reynolds stress tensor

Our results were obtained using an automatically generated mesh,
created with the same procedure as the one used to generate the meshes
for the random geometries. The solver settings were kept identical to
the settings used to obtain flow solutions for the random geometries,
save for adjusting 𝑢∞ to obtain the correct Reynolds number. The
solution took approximately 1 h to complete on a single Nvidia A100
GPU. The two quantities are plotted at several downstream locations in
Fig. 2.

The plots show good agreement between the reference values and
our flow solution. 𝑢-velocity deficit profiles, including the peak deficit,
are replicated with minimal errors at all three downstream locations.
Streamwise Reynolds stress tensor results also show good agreement
throughout most of the domain – important features such as the dual
peaks of the profile are closely followed – although the dip between the
two peaks is underestimated.

As a further soundness check, we also compared the time averaged
lift coefficient (𝐶𝐿) and drag coefficient (𝐶𝐷) values obtained from
our simulation with published data. We recorded a 𝐶𝐷 value of 1.46,
which is in line with the range of values between 1.22 and 1.50 in

previous literature as compiled by Giannenas and Laizet (2021), and a
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Fig. 1. Surface meshes of a selection of the randomly generated geometries used in the study.
𝐶𝐿 of 2.8 × 10−5 – i.e. practically 0 for a single precision calculation –
as expected. Thus, as our meshing and solver settings produce results
that are largely in line with previous literature for this validation case,
we can be confident that our dataset consists of physically correct
snapshots.

2.3. Postprocessing

As the final step in our data generation process, postprocessing was
applied to the snapshots to obtain sets of inputs and outputs used
to train the neural network models. Our postprocessing extends the
methodology which was used in our previous works based on conformal
mappings to incorporate geometry invariance in neural network based
FR methods (Özbay and Laizet, 2022a,b).

In the aforementioned method, the fluid domain 𝐹𝑖 around each
geometry 𝐺𝑖 is treated as a doubly connected 2D region, and a mapping
𝑓 between an annulus and 𝐹𝑖 is computed, as visualized in Fig. 3.
Subsequently, a grid equispaced in the radial and angular dimensions is
generated in the annular domain, and the mapping is used to calculate
the coordinates of the gridpoints in 𝐹𝑖, which constitute the sampling
points of the ground truth dense fields. As a result, each slice of the
grid along the radial direction is guaranteed to start on the surface of
the geometry 𝐺 and end on the outer boundary of the fluid domain.
3

𝑖

This work extends the method by incorporating the extrusion of
the 2D cross section in the third dimension. In essence, this allows the
dense flow fields around each geometry to be represented in cylindrical
coordinates (𝑟, 𝜃, 𝑧). We choose a resolution of 64 grid points per
dimension; hence, the dense fields are sampled on a 64 × 64 × 64 grid.

We consider two experiments with different types of sensor inputs.
In the first experiment, the sensor inputs consist of pressure and ve-
locity probes. The former consist of 50 probe locations equispaced
in the angular direction along the inner ring in the annular domain
at 10 stations equispaced in the spanwise direction, for a total of
500 pressure sensors. The latter, also consisting of 500 sensors, are
arranged in a 10 × 10 × 5 grid, spanning a 𝐿𝑚 × 5𝐿𝑚∕3 × 20𝐿𝑚∕7 box
𝐿𝑚∕7 downstream of the trailing edge of each object. Using this setup,
dubbed the ‘‘sparse’’ setup, we consider the reconstruction of the four
primary variables in the Navier–Stokes equations — the pressure 𝑝 and
the three velocity components 𝑢, 𝑣 and 𝑤.

The second experiment retains the previous pressure sensor setup
but uses plane measurements of velocity fields, called the ‘‘plane’’
setup. Two perpendicular planes with 32 × 32 velocity sensors each
are considered; an 𝑥𝑦-plane and an 𝑥𝑧-plane, both downstream of
the randomly generated objects. This sensor setup has seen use in
experiments (Chandramouli et al., 2019), and hence is of interest within
the context of certain setups involving PIV, an optical technique used
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Fig. 2. Comparison of results by Mittal et al. (1997) with our results for ⟨𝑢⟩ − 𝑢∞ (left) and ⟨𝑢′𝑢′⟩∕𝑢2∞ (right) for the Re = 300 cylinder, 1.2 D (top), 1.5 D (middle) and 2.0 D
(bottom) downstream the center of the cylinder.

Fig. 3. A random geometry (left) and its corresponding preimage (right). Blue and green contours depict the norm and argument in the annular domain, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 3D representation of the sparse (top) and plane (bottom) sensor setups on a circular cylinder. �̄�, �̄�, �̄� refer to the 𝑥, 𝑦, 𝑧 coordinates normalized by 𝐿𝑚.
in experiments capable of measuring the velocity field for turbulent
fluid flows, and for which the pressure fields must be inferred from
the velocity measurements (De Kat and Van Oudheusden, 2012). The
two sensor setups are visualized in Fig. 4.

We would like to point out that our flow reconstruction framework
has been designed to be trained with three-dimensional high-fidelity
computational data. Experimental three-dimensional data (such as 3D
PIV) could also potentially be used in the future for the training of our
framework.

3. Model architecture and training

To carry out 3D flow reconstruction, we use a convolutional
autoencoder-based architecture, dubbed FR3D. It consists of three
parts: an encoder, a decoder and a latent embedder. The encoder

 ∶ R𝐼 → R𝐸

compresses its input 𝐱 into a latent space embedding 𝐥, where 𝐼 ≪ 𝐸. Its
architecture is a typical convolutional encoder architecture; each block
consists of an initial convolution to double the number of channels, fol-
lowed by sub-blocks applying batch normalization (Ioffe and Szegedy,
2015), a further convolution and a residual (skip) connection (He et al.,
5

2016) to the beginning of the sub-block, and finally downsampling
via average pooling. Our setup involved four such blocks, with four
sub-blocks per block. The activation function used for all intermediate
convolutional layers is the leaky rectified linear unit (LeakyReLU)

LeakyReLU(𝑥) = max(𝛼𝑥, 𝑥).

After the encoder, the decoder

 ∶ R𝐸 → R𝐼

de-compresses 𝐥 into an approximation �̂� of 𝐱. The decoder is similar
to the encoder in structure, except the downsampling operations are
replaced with upsampling operations via transpose convolutions.

In order to make the autoencoder useful for the flow reconstruction
task, a further submodel

 ∶ R𝑆 → R𝐸

is necessary, which we call the latent space embedder. The latent space
estimates latent space embeddings �̂� from the sensor inputs 𝐬, which
may be then used to compute �̂�. It consists of a dense layer and several
convolutional layers. The overall FR3D architecture is summarized in
Fig. 5, and the parameter counts are displayed in Table 1.
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Fig. 5. Our model architecture for 3D flow reconstruction. The integer tuples in each block indicate the shape of the tensor outputted by that block. The first three dimensions
correspond to the spatial dimensions, and the final dimension is the channel dimension.
Table 1
Parameter counts of the overall FR3D model and its submodels in the sparse sensor
configuration.

Submodel parameters Total parameters

Encoder 124,910,960
402,163,801Decoder 128,917,481

Latent embedder 148,335,360

The choice of architecture was motivated by two factors. First, a
convolutional approach was adopted due to such architectures’ strong
relative performance in previous multi-geometry FR scenarios (Özbay
and Laizet, 2022a). The autoencoder structure, meanwhile, was chosen
to control the number of parameters in the fully connected layer ingest-
ing the sensor inputs; many NN architectures used for FR incorporate a
fully connected layer which accepts the low-dimensional sensor inputs
and outputs a vector with dimensionality equal to the high-fidelity
field. As the number of parameters of a fully connected layer scales
linearly with the dimensionality of the output, and considering that
the high-fidelity fields in 3D FR have a higher dimension compared
to more commonly studied 2D FR scenarios, the autoencoder approach
can substantially cut the number of parameters in the fully connected
layers by constraining their outputs to the autoencoder’s latent space.

The training of the autoencoder was conducted using the Adam
optimization algorithm with an initial learning rate of 10−4, using
the mean squared error (MSE) as the loss function 𝐿. An alternative
approach using a generative adversarial network (GAN) (Goodfellow
et al., 2020) instead of the more traditional MSE loss was also explored,
however it was discarded in favor of the MSE loss function due to
exhibiting lower accuracy, particularly for the 𝑣-velocity. Appendix
provides more information about the GAN approach.

Optimization of the FR3D model using the MSE loss is done as
follows: first, for each batch in the dataset, an optimization step is taken
for the weights of  and . Then, the weights of the decoder are ’frozen’
and a further optimization step is taken for . This procedure, involving
the dense field 𝐱, the sensor inputs 𝐬 and the weights 𝐰𝐸 ,𝐰𝐷,𝐰𝐿 of
 ,, respectively, is summarized in Algorithm 1.

The models and the training procedure were implemented using
Tensorflow (Abadi et al., 2016) version 2.9 running on a server with
two Nvidia A100 40 GB GPUs and an AMD EPYC 7443 24-core CPU.
The number of training epochs was determined using an early stopping
mechanism based on the validation loss, which automatically stops
training when the validation loss level does not decline after a set
number of epochs. To expedite the training process, once the weights of
6

Algorithm 1 Optimization of the FR3D model using a single batch of
data
1: function Optimize(𝐰𝐸 ,𝐰𝐷,𝐰𝐿, 𝐬, 𝐱)
2: 𝐥 ∶= (𝐱,𝐰𝐸 )
3: �̂� ∶= (𝐥,𝐰𝐷)
4: 𝐰𝐸 ← Adam(∇𝐰𝐸

𝐿(𝐱, �̂�),𝐰𝐸 )
5: 𝐰𝐷 ← Adam(∇𝐰𝐷

𝐿(𝐱, �̂�),𝐰𝐷)
6: �̂� ∶= (𝐬,𝐰𝐿)
7: �̂� ← (�̂�,𝐰𝐷)
8: 𝐰𝐿 ← Adam(∇𝐰𝐿

𝐿(𝐱, �̂�),𝐰𝐿)
9: end function

 and  were obtained during training for the sparse sensor setup, they
were reused for the plane sensor setup. The procedure was carried out
separately for all flow variables (pressure 𝑝 and velocity components
𝑢, 𝑣,𝑤), each taking approximately 48 h to converge.

4. Results

Below, we present the results obtained by applying the FR3D model
trained using the procedure in Section 3 to the validation dataset,
consisting of 20 geometries not encountered during training. First,
we display the results obtained for reconstructing the pressure and
velocity from sparse sensors in Section 4.1, with Q-criterion contours
also accurately reconstructed from the predicted velocity fields. Next,
we demonstrate that the FR3D model can also be extended to estimate
pressure fields from velocity data sampled on perpendicular planes in
Section 4.2. Finally, we demonstrate that the pressure and velocity
predictions from the FR3D model can be used to accurately estimate
the time evolution of the drag and lift coefficients in Section 4.2.1.

4.1. Reconstruction from sparse sensors

We begin our analysis of the results using the sparse sensor case.
Table 2 provides an overview of the model’s overall performance via
the mean absolute percentage error (MAPE) and mean squared error
(MSE) metrics averaged over the entire validation dataset. To focus
on the regions of highest interest in the domain, the error metrics are
computed for sampling points inside a box with extents [−𝐿𝑚, 8𝐿𝑚∕3]×
[−𝐿𝑚, 𝐿𝑚] in the 𝑥- and 𝑦-directions relative to the centroid of each
object and covering the entire spanwise direction.
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Table 2
Mean absolute percentage (MAPE) and mean squared (MSE) error levels achieved by
the FR3D model on the validation dataset for reconstruction from sparse sensors. The
‘‘Input to ’’ column refers to whether the model was run with the sensors (using the
latent embedder submodel , inference configuration) or the ground truth field (using
he encoder submodel ) as the inputs.
Var. Input to  MAPEa Min–max MAPEb MSE Min–max MSE

𝑝
 9.50% 6.33% 6.21 × 10−3 8.76 × 10−4

 3.68% 2.34% 1.86 × 10−3 3.07 × 10−4

𝑢
 4.41% 2.68% 9.06 × 10−3 2.20 × 10−4

 2.59% 1.36% 2.69 × 10−3 6.37 × 10−5

𝑣
 16.33% 3.07% 6.31 × 10−3 1.99 × 10−4

 11.96% 1.88% 2.08 × 10−3 6.52 × 10−5

𝑤
 35.06% 3.52% 3.82 × 10−3 5.15 × 10−4

 33.75% 2.69% 2.21 × 10−3 2.97 × 10−4

aPercentage error figures are filtered to remove gridpoints with ground truth values
less than 2% of the maximum absolute ground truth value in a snapshot.
b ‘‘Min–max’’ refers to error figures with min–max normalization applied based on the
ground truth field.

The error figures show that, overall, our model generalizes well to
the validation set. The raw MAPE values for 𝑝 and 𝑢 are both below 10%
for previously unseen geometries, which is in line with our previous
work with 2D geometries (Özbay and Laizet, 2022b,a), despite the
substantially greater challenge of 3D flows which contain more compli-
cated structures orientated in various directions. In terms of absolute
errors and normalized percentage errors, the predictions for 𝑣 and 𝑤
are also at a similar level of accuracy. However, we draw attention to
the large discrepancy between MAPE and Min–max MAPE figures for 𝑣
and 𝑤. This is caused by the fact that, due to our choice of boundary
conditions, the mean ground truth values for 𝑝 and 𝑢 are distributed
around a mean of 1, while those of 𝑣 and 𝑤 are distributed around 0.
Due to this, though the absolute error levels (i.e. the numerator of the
percentage error expression) are broadly similar for all four variables,
the percentage error metrics for 𝑣 and 𝑤 are much higher since the
denominator of the percentage error expression is much smaller for
those variables.

Further evidence displaying the FR3D model’s generalization perfor-
mance can be seen in Fig. 6, which visualizes the (encoder-computed)
latent space vectors associated with validation snapshots via the t-
SNE (Hinton and Roweis, 2002) method. The latent space vectors show
that FR3D’s latent space is able to cluster the snapshots associated
with different geometries together even for geometries unseen during
training, which suggests that the latent space is well-conditioned for
multi-geometry flow reconstruction.

Figs. 7, 8 and 9 provide further qualitative insights into the strong
performance of the model via iso-contours of the Q-criterion, iso-
contours of the pressure, and slices of both pressure and velocity
components (respectively), for three randomly chosen snapshots ex-
hibiting varying degrees of spanwise effects. 3D visualizations of these
quantities from experimental data are often difficult as previously
discussed – e.g. the amplification of sensor noise when computing ve-
locity gradients presents a serious challenge for plotting the Q-criterion
from experimental measurements. Thus, our results lay the groundwork
for a step-function improvement in visualization of results from fluid
dynamics experiments via flow reconstruction, all without the need for
complicated post-processing techniques.

The contour plots indicate that the model is able to reconstruct
the key details of the flow field. First, we draw attention to the shed
vortices downstream of the object. In the top snapshot, the spanwise
structure is placed at approximately (2.1𝐿𝑚,−0.2𝐿𝑚) on the 𝑥𝑦-plane;
its shape is elliptic with a width of 0.2𝐿𝑚 and a height of 0.4𝐿𝑚. The
middle snapshot shows two spanwise structures, one far downstream at
(2.2𝐿𝑚,−0.1𝐿𝑚) with a diameter of 0.5𝐿𝑚, and a second newly forming
one at (𝐿𝑚,−0.1𝐿𝑚). Finally, the bottom snapshot shows three struc-
tures, placed at (0.8𝐿 ,−0.1𝐿 ), (1.3𝐿 , 0.2𝐿 ) and (2.6𝐿 ,−0.2𝐿 ).
7

𝑚 𝑚 𝑚 𝑚 𝑚 𝑚
Fig. 6. t-SNE visualization of the FR3D model’s latent space colored by geometry,
generated using the validation data. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

The first and the third are roughly circular with 0.25𝐿𝑚 diameters,
while the middle one is elliptical with a horizontal axis of 0.2𝐿𝑚 and a
ertical axis of 0.4𝐿𝑚. Furthermore, these structures are slightly ‘‘bent’’
bout the middle of the domain (𝑧 = 1.5𝐿𝑚) in the 𝑥− and 𝑧− directions
espectively by about 0.4𝐿𝑚. The locations and sizes of these structures
re correctly reconstructed in all three cases and major features such
s the ‘‘bends’’ in the bottom snapshot are present, although minor
naccuracies are present such as the thin section of the bend in the
urthest downstream structure in the bottom snapshot.

Larger scale streamwise structures are also accurately reconstructed,
articularly the hairpin structure spanning the box [𝐿𝑚, 2.2𝐿𝑚] ×
−0.3𝐿𝑚, 0.5𝐿𝑚] × [2.1𝐿𝑚, 2.8𝐿𝑚] in the first snapshot and the finger-
ike structures with size 1.2𝐿𝑚 aligned across the 𝑥-axis placed at
0.5𝐿𝑚, 1.5𝐿𝑚) and (0.5𝐿𝑚, 2.5𝐿𝑚) on the 𝑦𝑧-plane connecting the two
hed vortices in the second snapshot. Hence, our model is capable of
eplicating flows with different intensities of spanwise effects, which
anifest as streamwise aligned vortices, spanwise aligned vortices, or
combination of both.

Pressure contours in Fig. 8 corroborate the observations from Q-
riterion contours; the first two pressure snapshots display that the
odel is capable of reconstructing three dimensional features (the

himney-like structure in the first snapshot and the hole in the second
napshot) of the pressure field, while the third snapshot shows that
he location and intensity of the shed vortices are correctly replicated.
owever, two areas of improvement stand out in both contour plots:

irst, compared to the ground truth, the predicted surfaces are noisier
nd less smooth. Second, some flow features at smaller length scales
re missing; this is pronounced especially for the first snapshot in the
igures.

Complementing the contour plots, Fig. 9 provides greater detail
egarding the middle snapshot in Figs. 7 and 8, which is depicting
spanwise vortex that has just been shed from the trailing edge of

he object, connected via streamwise structures to a second spanwise
ortex further downstream. The core of the newly shed vortex in the
napshot is reconstructed clearly as shown by the 𝑥𝑦-planes of the 𝑝
nd 𝑢 plots, identifiable by the low pressure region in the 𝑝 plot and
he recirculation region in the 𝑢 plot. Meanwhile, the 𝑦𝑧-planes of the

and 𝑤 provide further evidence of the high quality of the recon-
tructed streamwise structures; the negative 𝑣 regions and the rapidly
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Fig. 7. Ground truth (left) and predicted (right) 𝑄-criterion (𝑄 = 0.05) iso-contours from three randomly chosen snapshots belonging to different geometries.
alternating 𝑤 regions are accurately reconstructed and correspond to
the finger-like structures observed in Fig. 7. Fig. 10 depicts 2D maps of
the spanwise-averaged absolute error for the predicted fields. Errors are
chiefly coincident with the coherent structures in the flow, and do not
increase with distance from sensor locations, highlighting the capability
of the FR3D architecture to predict the flow accurately in the entire
problem domain.

4.2. Reconstruction from plane measurements

Next, we showcase the results using the plane sensor setup. Table 3
displays error metrics with this sensor setup, similar to Table 2 for the
sparse sensor setup. The error levels of are slightly higher overall with
this sensor setup, with the largest relative rise in error encountered in
8

predictions of 𝑢. Overall, the similarity between the error levels of the
plane setup and the error levels with the sparse setup demonstrates the
flexibility of our model in regards to the sensor setup, which is highly
important for its future potential applications since its main envisioned
future use – physical experiments – can involve widely varying sensor
setups.

Pressure contours for three further geometries, using predictions
made for this sensor setup, can be found in Fig. 11. Similar to the
pressure contour results for the sparse sensor setup in Fig. 8, major
features of the pressure field are accurately reconstructed with this
sensor setup as well. Recovering pressure from plane measurements
of velocity is often a challenge in experimental settings involving
PIV (De Kat and Van Oudheusden, 2012). Thus, the present results
suggest the FR3D model has the potential to help overcome challenges
associated with recovering pressure fields from PIV experiments.



International Journal of Heat and Fluid Flow 103 (2023) 109199A.G. Özbay and S. Laizet
Fig. 8. Ground truth (left) and predicted (right) pressure (top, bottom: 𝑝 = 0.85, middle: 𝑝 = 0.75) iso-contours colored by velocity magnitude from three randomly chosen snapshots
belonging to different geometries, using the model trained on the sparse sensor setup. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Table 3
Mean absolute percentage (MAPE) and mean squared (MSE) error levels achieved
by the FR3D model on the validation dataset for reconstruction from plane velocity
measurements. Error metrics using the encoder input are not provided, as they are
identical to the values in Table 2.

Var. Input to  MAPE Min–max MAPE MSE Min–max MSE

𝑝  10.19% 6.55% 6.55 × 10−3 9.03 × 10−4

𝑢  7.76% 5.17% 1.34 × 10−2 9.66 × 10−4

𝑣  18.15% 3.08% 6.96 × 10−3 2.00 × 10−4

𝑤  38.24% 5.77% 4.16 × 10−3 7.43 × 10−4
9

4.2.1. Estimation of lift and drag
Since the FR3D model is capable of accurately reconstructing the

pressure and velocity fields, these results can be also applied to estimate
the instantaneous lift and drag coefficients 𝐶𝐿 and 𝐶𝐷 experienced by
the investigated geometries. Our choice of sampling points, utilizing
the aforementioned conformal mapping approach instead of the more
traditional Cartesian approach, makes this task substantially easier, as
the need for interpolating the pressure and velocity fields onto the
object surfaces is removed. This is due to the fact that the sampling
points which lie on the inner ring of the annulus (cf. Fig. 3) always
lie on the original geometry’s surface when the conformal mapping is
applied.
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Fig. 9. Ground truth (left) and predicted (right) slices of pressure and velocity fields for the middle snapshot in Figs. 7 and 8.
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Fig. 10. Spanwise-averaged absolute error fields for the pressure, 𝑢-velocity, 𝑤-velocity and 𝑣-velocity (clockwise from top left), normalized by the standard deviations of the
respective field variables, for the middle snapshot in Figs. 7 and 8.
To compute lift and drag forces, we adopt the approach of com-
puting the body forces (pressure force and skin friction) through the
integration of the pressure and the shear stresses across the object sur-
face. The integration is carried out through the finite element method,
approximating the surface of the geometry as a collection of quadrilat-
eral surfaces. The dense field sampling points which lie on the object
surface serve as the vertices of each quadrilateral. Since we do a simple
extrusion in the 𝑧-direction, each quadrilateral is a rectangle. Defining
a Cartesian coordinate system(𝜉, 𝜂) on the quadrilateral, with the origin
on one of the vertices of the quadrilateral, the standard bilinear basis
functions
𝑁1 = (1 − 𝜉)(1 − 𝜂), 𝑁2 = 𝜉(1 − 𝜂),

𝑁3 = (1 − 𝜉)𝜂, 𝑁4 = 𝜉𝜂,

can be used to approximate the pressure distribution on quadrilateral
𝑗 as

�̃�𝑗 =
∑

𝑖
�̂�𝑖𝑗𝑁𝑖,

where �̂�𝑖𝑗 is the pressure prediction on vertex 𝑖 of quadrilateral 𝑗.
Consequently, the pressure force on the quadrilateral (with surface
normal �̂�𝑗) can be approximated by integrating �̃�𝑗 along the surface
of the quadrilateral:

𝑓𝑝,𝑗 = ∫ �̃�𝑗 �̂�𝑗 d𝐴. (1)

For a rectangle, the result of Eq. (1) is simply the average of the
pressure values at its vertices, times its area

𝑓𝑝,𝑗 = �̂�𝑗𝐴𝑗

4
∑

𝑖=1

1
4
�̂�𝑖𝑗 = 𝐴𝑗

4
∑

𝑖=1

1
4
�̂�𝑖𝑗 . (2)

In practice, 𝐴𝑗 can be directly computed by taking the cross product
of the vectors which run along the edges of the rectangle, and these
vectors can be easily computed given the rectangle’s vertex coordinates.
The overall pressure force can be computed by adding the pressure
force on each quadrilateral 𝑓 =

∑

𝑓 .
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𝑝 𝑗 𝑝,𝑗
Table 4
Mean absolute percentage error (MAPE) and mean squared error (MSE) metrics
averaged over the test dataset.

Sensor setup Coefficient MAPE MSE

Sparse 𝐶𝐿 9.16% 9.91 × 10−4

𝐶𝐷 4.31% 4.86 × 10−4

Planes 𝐶𝐿 7.18% 6.91 × 10−4

𝐶𝐷 3.43% 2.77 × 10−4

The skin friction force 𝑓𝑓 can be computed by repeating the above
procedure, substituting the wall shear stresses for the pressures. The
shear forces can be approximated using the standard formula

𝜇
𝜕𝑢∥
𝜕𝑛

,

where 𝜇 is the dynamic viscosity, 𝑢∥ is the velocity parallel to the
surface and 𝑛 is the coordinate normal to the surface. The gradient term
can be approximated as
𝜕𝑢∥
𝜕𝑛

≈
𝑢∥(𝑛 = 𝛿𝑛) − 𝑢∥(𝑛 = 0)

𝛿𝑛
=

𝑢∥(𝑛 = 𝛿𝑛)
𝛿𝑛

(3)

The annular sampling method also greatly simplifies the computation
of the approximation in Eq. (3), as it ensures that each sampling point
on the object surface (slice index 0 across the first dimension of the
64 × 64 × 64 prediction array) has a corresponding sampling point
above it in the wall-normal direction (slice index 1 across the first
dimension of the same array).

Once both the skin friction forces 𝑓𝑓 and pressure forces 𝑓𝑝 are
known, the overall body forces can be simply computed as 𝑓 = 𝑓𝑓 +𝑓𝑝.
This method, combined with the FR3D model, leads to very accurate
lift and drag predictions as seen in the error metrics averaged over the
entire test dataset in Table 4 and the time evolutions of 𝐶𝐿 and 𝐶𝐷
plotted for two of the random test geometries in Fig. 12.

The lift and drag estimation capability presented by the FR3D
model presents a substantial leap over similar approaches in previous
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Fig. 11. Ground truth (left) and predicted (right) pressure (top: 𝑝 = 0.75; middle, bottom: 𝑝 = 0.85) iso-contours colored by velocity magnitude from three randomly chosen
snapshots belonging to different objects, using the model trained on the plane sensor setup. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
literature; for example, Chen et al. (2021) demonstrated the capability
to predict 𝐶𝐷 with percentage errors of 3.43%, but only for steady
2D flows at Reynolds number equal to 10. In comparison, our model
is capable of achieving similar levels of error, but for unsteady 3D
flows for Reynolds numbers 50 times larger. The results are especially
impressive when using the plane sensor setup, where we match the drag
error levels reported by Chen et al. (2021), despite the substantially
more difficult task at hand.

We observed that our lift and drag predictions are especially ac-
curate on high aspect ratio shapes resembling airfoils, such as the
geometry on the right column in Fig. 12. The level of accuracy on bluff
bodies is still reasonably high, as seen in the bluff body on the left
column in the same figure. However, we did see a slight degradation
12
in accuracy on shapes with concave sections, such as the middle right
geometry in Fig. 1 for which the time-averaged 𝐶𝐿 and 𝐶𝐷 prediction
errors were 14% and 8% respectively. This is due to the substantially
more complicated flow patterns occurring in such geometries, and the
relative rarity of such geometries in the dataset.

5. Conclusion and future work

In this study, we described the performance of FR3D, a convo-
lutional autoencoder neural network model, on the reconstruction of
three-dimensional flows past objects with varying cross-sections, given
measurements of the flow field from sparse sensors and plane mea-
surements. Using a conformal mapping technique to achieve geometry
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Fig. 12. Time evolutions of the lift (middle) and drag (bottom) coefficients for two of the random geometries (left and right) in the test dataset. Predictions were made using the
model trained using the sparse sensor setup, and the target values were computed using the body force results outputted by PyFR.
invariance, we demonstrated that the FR3D architecture is capable
of reconstructing instantaneous pressure and velocity fields of flows
past such geometries with min–max normalized percentage error levels
under 10% for geometries not encountered during training at a fixed
Reynolds number. The reconstructions are of a quality sufficient to
accurately replicate the major features of Q-criterion and pressure
iso-contours.

Subsequently, we applied the FR3D model to a scenario in which
velocity measurements are available in two orthogonal planes, whereby
it is attempted to recover the flow variables – including pressure –
from the measurements of the velocity components downstream of the
object. The FR3D model also performed well in this additional scenario,
reconstructing the dense pressure fields with percentage errors just
above 10%.

Finally, using the reconstructed fields, we demonstrated that the lift
and drag coefficients can be estimated within 10% of the ground truth
values using both sensor setups, going as low as 3.43% when estimating
drag coefficients using the plane measurement setup.
13
In the future, we aim to extend this work by investigating:

• Noisy measurements: The FR3D model was trained and evalu-
ated using high-fidelity values obtained via computation. In con-
trast, a large degree of uncertainty exists in real-world measure-
ments and ensuring that FR models are robust to noise will be nec-
essary before they can be utilized in real laboratory environments,
as opposed to computational studies.

• More complex geometries: The present work focused on inves-
tigating only objects extruded in the spanwise direction, in order
to leverage our previous work on applying Schwarz–Christoffel
mappings for training a model that can handle different ge-
ometries well. Different mapping techniques, such as boundary
conforming curvilinear coordinate systems (Thompson, 1982), or
different neural network model architectures such as graph neural
networks that do not depend on regular grids, will be necessary
to achieve geometry invariance for a broader class of objects.

• Varying Reynolds numbers: Since the dataset in this work
consisted solely of flows at a fixed Reynolds number, the model
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is not expected to perform well at other Reynolds numbers.
Extending the model to perform well for a wide range of Reynolds
numbers, possibly through adding a ‘physics-informed’ loss func-
tion component, will greatly boost its usefulness. Reconstructing
three-dimensional flows at high Reynolds numbers, relevant to
real-life applications might be possible with hybrid approaches,
combining different neural network architectures. For example,
combining CNNs with recurrent neural networks (RNNs) could
better capture both spatial and temporal dependencies in the flow
field.

• State-of-the-art generative models: Recent advances in gener-
ative models for images, such as Diffusion architectures (Rom-
bach et al., 2022), constitute promising directions for substantial
advances in flow reconstruction.
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ppendix. Results using the GAN approach

Flow reconstruction models, such as the FR3D model introduced
n the present work, can be broadly described as ‘generative’ deep
earning models. Generative adversarial networks (GANs) (Goodfellow
t al., 2020) constitute a method of training generative deep learning
odels by introducing a second neural network called a ‘discrimina-

or’. The discriminator is tasked with classifying whether a particular
utput belongs to the ground truth dataset or was generated by the
enerator. Throughout the training process, the generator tries to ‘fool’
he discriminator; the discriminator outputs probabilities regarding
hether the outputs of the generator were generated or not, and the
enerator tries to minimize that probability by using the discriminator
s a component of its loss function.

Training the FR3D model with a GAN approach was attempted using
procedure based on Algorithm 1. The new approach first trains the

R3D encoder  , decoder  and latent space embedder  in a similar
fashion, but adds a binary cross-entropy loss component

𝐿 (𝐭, 𝐲) = −(𝐲 ln(𝐭) + (1 − 𝐲) ln(1 − 𝐭)), (A.1)

for the outputs of the discriminator . The outputs from the decoder
are then used to train the discriminator with a batch of data consisting
of both the decoder outputs and the ground truth snapshots. This
14

procedure is outlined in Algorithm 2.
Algorithm 2 Optimization of the GAN variant of the FR3D model using
a single batch of data. Zeroes(⋅) and Ones(⋅) are functions which output
a vector of 0 or 1 values, respectively, with the number of entries equal
to the number of samples in the input. Concat(⋅, ⋅) is a function which
concatenates two tensors along their first dimension.
1: function OptimizeGAN(𝐰𝐸 ,𝐰𝐷,𝐰𝐿,𝐰𝐶 , 𝐬, 𝐱)
2: 𝐭 ∶= Zeroes(𝐱)
3: 𝐥 ∶= (𝐱,𝐰𝐸 )
4: �̂� ∶= (𝐥,𝐰𝐷)
5: 𝐰𝐸 ← Adam(∇𝐰𝐸

𝐿(𝐱, �̂�) + 𝐿 (𝐭,(�̂�,𝐰𝐶 )),𝐰𝐸 )
6: 𝐰𝐷 ← Adam(∇𝐰𝐷

𝐿(𝐱, �̂�) + 𝐿 (𝐭,(�̂�,𝐰𝐶 )),𝐰𝐷)
7: �̂� ∶= (𝐬,𝐰𝐿)
8: �̂� ← (�̂�,𝐰𝐷)
9: 𝐰𝐿 ← Adam(∇𝐰𝐿

𝐿(𝐱, �̂�) + 𝐿 (𝐭,(�̂�,𝐰𝐶 )),𝐰𝐿)
10: 𝐭 ∶= Concat(Ones(𝐱),Zeroes(𝐱))
11: 𝐰𝐶 ← Adam(∇𝐰𝐶

𝐿 (𝐭 ,(Concat(�̂�, 𝐱),𝐰𝐶 )),𝐰𝐶 )
12: end function

Table A.5
Mean absolute percentage (MAPE) and mean squared (MSE) error levels achieved
by the FR3D model trained using the GAN approach on the validation dataset for
reconstruction from point measurements.

Var. Input to  MAPE Min–max MAPE MSE Min–max MSE

𝑝  11.15% 7.74% 6.99 × 10−3 1.05 × 10−3

𝑢  10.98% 8.12% 8.21 × 10−3 1.57 × 10−3

𝑣  44.06% 15.08% 1.66 × 10−2 3.61 × 10−3

𝑤  35.16% 7.29% 3.29 × 10−3 1.32 × 10−3

The NN architecture chosen for the discriminator  was identical
to the encoder, however the pool size was increased to 4 and a flatten
operation followed by a dense layer using the sigmoid activation func-
tion was appended to classify the inputs. The results from training the
FR3D model with this GAN setup are summarized in Table A.5.

The GAN approach achieves largely similar error levels to MSE for
the pressure field and 𝑤, however also exhibits severe degradation
in performance for 𝑢 and 𝑣. As a result, it was observed that the
R3D model trained with the GAN approach had substantially worse
erformance than the baseline MSE version in terms of aerodynamic
orce coefficient predictions, with the mean percentage errors for 𝐶𝐿

and 𝐶𝐷 increasing to 23.39% and 14.29% respectively. Predictions of
the location and intensity of vortices/coherent structures in the wakes
are also similarly worse, with the Q-criterion contours not displaying
many of the features otherwise reconstructed in the MSE version.
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