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Abstract. Modern large-scale wind farms consist of multiple turbines clustered together, usually in well-
structured formations. Clustering has a number of drawbacks during a wind farm’s operation, as some of the
downstream turbines will inevitably operate in the wake of those upstream, with a significant reduction in power
output and an increase in fatigue loads. Wake steering, a control strategy in which upstream wind turbines are
misaligned with the wind to redirect their wakes away from downstream turbines, is a promising strategy to
mitigate power losses. The purpose of this work is to investigate the sensitivity of open-loop wake steering opti-
misation in which an internal predictive wake model is used to determine the farm power output as a function of
the turbine yaw angles. Three different layouts are investigated with increasing levels of complexity. A simple
2× 1 farm layout under aligned conditions is first considered, allowing for a careful investigation of the sensi-
tivity to wake models and operating conditions. A medium-complexity case of a generic 5×5 farm layout under
aligned conditions is examined to enable the study of a more complex design space. The final layout investigated
is the Horns Rev wind farm (80 turbines), for which there have been very few studies of the performance or sen-
sitivity of wake steering optimisation. Overall, the results indicate a strong sensitivity of wake steering strategies
to both the analytical wake model choice and the particular implementation of algorithms used for optimisation.
Significant variability can be observed in both farm power improvement and optimal yaw settings, depending on
the optimisation setup. Through a statistical analysis of the impact of optimiser initialisation and a study of the
multi-modal and discontinuous nature of the underlying farm power objective functions, this study shows that
the uncovered sensitivities represent a fundamental challenge to robustly identifying globally optimal solutions
for the high-dimensional optimisation problems arising from realistic wind farm layouts. This paper proposes
a simple strategy for sensitivity mitigation by introducing additional optimisation constraints, leading to higher
farm power improvements and more consistent, coherent, and practicable optimal yaw angle settings.

1 Introduction

Wind energy now plays a central role in meeting world en-
ergy requirements, driven by the urgent need to mitigate cli-
mate change and a significant recent reduction in its levelised
cost. New and ambitious international renewables targets,
such as the European Commission’s proposed installation of
up to 450 GW offshore wind capacity by 2050 (Pryor et al.,
2021), will require further significant increases in wind en-
ergy capacity. Large wind arrays with closely spaced turbines
will be used to meet this demand. These have logistical ad-
vantages over sparse layouts in terms of lower infrastructure

and maintenance costs and increased energy density. How-
ever, the performance of large wind arrays is degraded by
the aerodynamic interactions between turbines. Upstream-
generated turbine wakes exhibit lower wind speeds and in-
creased turbulence intensity, causing typical annual power
losses of 10% to 30% (Nygaard, 2014; Barthelmie et al.,
2009, 2010) in addition to increased fatigue loading.

Wake steering, in which upstream turbines are yawed to
deflect their wakes away from downstream machines, is a
leading control technique used to mitigate the effects of
wake–turbine interactions. Farm power increases ranging
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from 5% to 47% have been demonstrated in high-fidelity
simulations (Fleming et al., 2015, 2018), wind tunnel cam-
paigns (Campagnolo et al., 2016; Bastankhah and Porté-
Agel, 2019; Zong and Porté-Agel, 2021), and field tests
(Howland et al., 2019). To successfully implement wake
steering, one must navigate a natural trade-off: while wake
steering can increase wind speed and power production at
downstream turbines, it also reduces both the effective swept
area and the power production of any yawed wake-generating
turbine. For large arrays of turbines, in which there are mul-
tiple competing trade-offs arising from each interacting pair
of turbines, the question of maximising farm power via wake
steering becomes both a high-dimensional and a non-convex
optimisation problem. Such problems can be challenging to
solve, and their solutions can exhibit high parametric sensi-
tivity, which may partially explain the wide range of reported
farm power improvements in the literature.

With a view to enabling robust and predictable wake steer-
ing optimisation for large wind farms, this paper investi-
gates the sensitivity of wake steering optimisation. We fo-
cus on open-loop approaches in which internal predictive
wake models are used to determine the farm power out-
put (the cost function to be maximised) as a function of
the turbine yaw angles (the decision variables). In this pa-
per, we will use analytical, steady-state wake models which
capture only the most dominant physical wake features. A
number of models will be considered, including the Jensen
(Jensen, 1983), multizone (Gebraad et al., 2014), Gaussian
(Bastankhah and Porté-Agel, 2014), and Gauss–curl Hy-
brid (King et al., 2021) models, each of which is suitably
adapted using the approaches of Jiménez et al. (2009) and
Bastankhah et al. (2022) to capture yaw-induced wake mod-
ifications. These are chosen to be representative of com-
mon models used in wake steering optimisation (Kheirabadi
and Nagamune, 2019). Many optimisation algorithms have
been used to implement wake steering, and these can be
broadly categorised as either gradient-based or gradient-
free algorithms. Gradient-based methods include gradient as-
cent (Zong and Porté-Agel, 2021), sequential quadratic pro-
gramming (Annoni et al., 2018), steepest descent (Howland
et al., 2019), conjugate gradient (Thøgersen et al., 2017),
and quasi-Newton methods (van Dijk et al., 2017). Gradient-
free approaches to open-loop wake steering studies have used
game theory (Gebraad et al., 2016; van Dijk et al., 2016; Rott
et al., 2018), statistical optimisation for dynamic wind direc-
tions (Simley et al., 2020), particle swarm optimisation (Ah-
mad et al., 2019; Dou et al., 2020), evolutionary algorithms
(Dou et al., 2020), and random search algorithms (Kuo et al.,
2020). With a wide choice of models and algorithms avail-
able, it is natural to question if the solution to a given wake
steering optimisation problem is sensitive to these choices.

By optimisation sensitivity we refer to the dependency of
wake steering optimisation on (i) the choice of the under-
lying predictive model; (ii) the choice of the optimisation
algorithm and its particular parametric implementation; and

(iii) the given operating condition, such as farm layout or
atmospheric conditions. Furthermore, we measure optimisa-
tion sensitivity in terms of both (i) the optimised farm power
and (ii) the optimal decision variables themselves, i.e. the op-
timal yaw angles obtained from wake steering optimisation.
Arguably, the latter is the most important. Of particular inter-
est is to identify situations of high sensitivity: that is, when
either the predicted maximised power output or the optimal
yaw angles are seen to vary substantially with small changes
to the wake model, algorithm, or operating condition. When
high sensitivity is identified, we also study potential algorith-
mic changes to reduce it.

Understanding, quantifying, and reducing cases of high
sensitivity are of fundamental importance for robust wake
steering. To implement open-loop wake steering, tuning or
identification of wake model parameters from field data
or high-fidelity simulations is required. As with any tuned
model, there can be a mismatch between the predicted and
true farm behaviour. A first problem arises when the pre-
dicted optimised farm power output is highly sensitive to
the wake model parameters or algorithmic implementation.
In these cases, small modelling mismatches may cause large
deviations between the expected and true farm performance,
possibly nullifying any predicted power increase when ap-
plied in the field. A second problem occurs in the case of
high optimal yaw angle sensitivity. Here, a small paramet-
ric change (e.g. to model re-tuning or to atmospheric condi-
tions) may require large yaw angle changes, and it is prac-
ticably undesirable to make large control input changes in
response to only small operational perturbations. As is dis-
cussed in Sect. 4.3, the sensitivity of optimal yaw angles can
be observed in recent open-loop wake steering studies for
large-scale farms such as the Horns Rev installation (Dou
et al., 2020). More generally, we show that the high sensi-
tivity of decision variables also presents a fundamental chal-
lenge which must be overcome when one seeks to globally
optimise wake steering strategies for the high-dimensional
optimisation problems arising from realistic farm layouts.

In this paper, we do not consider active wake control or
closed-loop wake control in which online sensor information
is used to dynamically adapt wake steering strategies (see
Kheirabadi and Nagamune, 2019, and Houck, 2021, for com-
prehensive reviews). While recent and promising feedback
control strategies have been proposed (Doekemeijer et al.,
2019, 2020; Howland et al., 2020, 2022), closed-loop ap-
proaches still typically employ predictive wake models in
order to calculate their time-varying control inputs. Conse-
quently, the question of predictive sensitivity is still impor-
tant in the more complex closed-loop setting. By first study-
ing open-loop wake optimisation strategies in this paper, we
therefore also provide insight into the behaviour of closed-
loop approaches to wake steering optimisation.

Due to the large number of underlying modelling, algo-
rithmic, and parametric choices, in this paper we propose a
hierarchy of test cases to facilitate the understanding of the
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different sensitivities present in wake steering optimisation.
At the simplest level, a minimal optimisation problem con-
sisting of a 2×1 farm layout under aligned conditions is first
considered. In this case, optimisation can be performed by a
simple parametric sweep, removing any sensitivity to algo-
rithmic choice or implementation. The 2× 1 case, therefore,
allows a careful investigation of sensitivity to only the under-
lying wake model and operating conditions. Next, a medium-
complexity case of a 5× 5 farm layout under aligned con-
ditions is considered. This may be viewed as several non-
trivially interacting 2× 1 blocks, leading to a more complex
design space. Sensitivity, therefore, depends on both the al-
gorithmic implementation and the underlying wake model,
but quantification of the 2× 1 case facilitates the decoupling
of these two dependencies. We present a statistical analysis
of optimiser sensitivity in this case, in addition to comparing
the performance of global stochastic and local gradient-based
optimisation algorithms. Finally, a representative layout cor-
responding to the Horns Rev wind farm is considered. The in-
vestigation of this more complex optimisation problem will
be used to confirm whether the wake steering sensitivities
uncovered in the low- and medium-complexity cases trans-
fer to a realistic setup. Finally, we propose a simple strat-
egy for sensitivity mitigation, based on appropriately chosen
optimisation constraints, which is effective even for this re-
alistic and complex wake steering optimisation problem. To
the best of our knowledge, previous parametric investigations
into wake optimisation sensitivity (Rak and Santos Pereira,
2022; Göçmen et al., 2022) have not studied the effect of
optimiser class or analysed sensitivity from a statistical per-
spective and have not presented possible strategies for sensi-
tivity mitigation.

The remainder of the paper is organised as follows. Sec-
tion 2 gives an overview of the wind farm modelling frame-
work and introduces the wake and deflection models. In
Sect. 3, a description of the optimisation setup is provided,
including wind farm layouts, atmospheric conditions, and
optimisation algorithms. Sensitivity results and a discus-
sion are presented in Sect. 4 for the 2× 1 (Sect. 4.1), 5× 5
(Sect. 4.2), and Horns Rev (Sect. 4.3) cases. Finally, con-
clusions are given in Sect. 5. Appendices provide additional
details on wake and deflection model formulations (Ap-
pendix A), a validation of the optimisation framework (Ap-
pendix B), and an illustrative example of a Bayesian optimi-
sation on a one-dimensional toy problem (Appendix C).

2 Wind farm modelling

Wind farm modelling in the present work is conducted with
version 2.4 (after the resolution of issue number 684) of
the open-source FLORIS framework (NREL, 2021) by the
National Renewable Energy Laboratory (NREL). The wake
models considered in this paper are Jensen (Jensen, 1983),
multizone (Gebraad et al., 2014), Gaussian (Bastankhah and

Porté-Agel, 2014), and Gauss–curl Hybrid (GCH) (King
et al., 2021) and their respective deflection models (Jiménez
et al., 2009; Bastankhah and Porté-Agel, 2016). The four se-
lected models, fully described in Appendix A, have differ-
ent complexities, physical modelling capabilities, and em-
pirical parameter dependencies. They are selected because
they are representative of the models commonly used by the
wind energy community in optimisation and control studies
(Kheirabadi and Nagamune, 2019).

Although different wake models will logically give differ-
ent power predictions, in a wake steering optimisation con-
text, it may still be the case that different models give rise
to similar optimal yaw angles. Consequently, the question of
the modelling fidelity required to enable robust wake steering
optimisation may be different to the question of which model
is best to capture a given physical wake characteristic. In this
regard, we emphasise that the purpose of this study is not to
identify which model is best to study a particular wind farm.
Rather, we seek to identify situations in which wake steering
optimisation is highly sensitive either to the choice of under-
lying model or to the interaction between the model choice
and the particular parametric implementation of commonly
used optimisers (see Sect. 3 for a full description of optimi-
sation algorithms used), since high sensitivity presents a fun-
damental barrier to robust optimisation performance, even
when using models tuned to high-fidelity simulation data or
field data. As a result, the wake and deflection model param-
eters for this study simply use the FLORIS-recommended
standard values, reported in Table 1.

We now give a brief overview of FLORIS’s wind farm
modelling structure. First, an initial condition is defined by
specifying atmospheric inflow, wind farm layout, turbine ge-
ometry, and operational conditions. Next, the chosen wake
model calculates each turbine’s steady streamwise velocity
deficit. The computation is sequential to allow additional
considerations on added turbulence. For yawed turbine cases,
a deflection model is employed to determine and apply a
cross-stream shift in the streamwise velocity deficit field. Fi-
nally, streamwise velocity deficits for each turbine are com-
bined with a superposition model and are applied to the ini-
tial flow field. In the current study, all wake models use the
sum of squares freestream superposition (SOSFS) model de-
veloped by Katic et al. (1987). Based on the conservation of
the mean kinetic energy deficit during wake interaction, the
combined wake velocity Uw, dependent on the three spatial
dimensions (x,y,z), is defined as

Uw(x,y,z)= U∞−
√∑

i

(
U∞− uiw(x,y,z)

)2
, (1)

where U∞ is the mean freestream velocity, and uiw is the
wake streamwise velocity induced by turbine i under stand-
alone conditions.

Farm power calculations are conducted as follows. Tur-
bine operational profiles consist of lookup tables for power
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Figure 1. Streamwise velocity at hub height of a 2×1 wind farm layout for the (a) Jensen (Jiménez), (b) multizone (Jiménez), (c) Gaussian
(Bastankhah), and (d) GCH (Bastankhah) wake and deflection models at an upstream rotor yaw angle of 20◦. The white vertical lines
represent the streamwise locations for the velocity profile section plots, ordered by increasing downstream distance, while the horizontal
lines indicate the upstream rotor centreline.

and thrust coefficients (CP and CT, respectively) as a func-
tion of streamwise velocity. These tables are generated by
the FAST (Jonkman, 2021) (fatigue, aerodynamics, struc-
tures, and turbulence) aeroelastic simulator developed by
NREL. Given a resolved wind farm flow field Uw(x,y,z),
the streamwise velocities at the turbine rotor grid points

Urotor(x,y,z) are defined by interpolation. The averaged
streamwise velocity U of the spatial extent of the un-yawed
turbine is expressed by

U =
3
√
U

3
rotor. (2)
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The power PT generated by a single turbine is given by

PT = 0.5ρACP(U (cosγT)w)3, (3)

where ρ is the air density, A is the un-yawed rotor swept
area, CP is the interpolated power coefficient based on the
rotor averaged streamwise velocity U , γT is the turbine yaw
angle to the inflow wind direction, and w is a tuneable pa-
rameter matching the power loss due to yaw misalignment.
This study uses w = 0.627 for both of the turbines consid-
ered (NREL 5 MW and Vestas V80 2 MW), matching the
tuned value for the NREL 5 MW presented in Fleming et al.
(2017). Considering the lack of power data for the Vestas
V80 2 MW turbine under yawed conditions, preliminary in-
vestigations were conducted to assess the influence of w on
yaw steering optimisation. It was found that w does not fun-
damentally impact the main trends of optimal yaw settings
and power improvements presented herein, motivating the
use of a common value w = 0.627 for all examples.

The total farm power is calculated as

PWF =

N∑
i=1

PTi , (4)

where N is the total number of turbines in the farm configu-
ration. Finally, the normalised farm power production is de-
fined as

G(γ )=
PWF(γ )
PWF(0)

, (5)

where γ = {γi}
N
i=1 ∈ R

N is the yaw angle of the N tur-
bines considered in each configuration, PWF(0) is the farm
power without wake steering, and PWF(γ ) is the farm power
achieved for a particular choice of yaw angles γ . The conven-
tion for yaw misalignment involves a positive yaw angle sig-
nifying an anticlockwise rotation of the nacelle when viewed
from above.

Figure 1 presents a visual overview of the main wake fea-
tures predicted by the models employed in this study, includ-
ing streamwise velocity deficit distributions, expansion rates,
and wake deflections due to yaw. This figure is subsequently
mentioned to help understand the sensitivity of wind farm
wake steering optimisation to the choice of underlying wake
models. Further details on wake and deflection model formu-
lations are provided in Appendix A.

3 Optimisation and wind farm setups

Open-loop wake steering optimisation for power maximisa-
tion is conducted on three different farm layouts. The first
two are a 2× 1 farm layout and a 5× 5 farm layout, both
under fully aligned wind conditions, with NREL 5 MW tur-
bines (Jonkman et al., 2009) with rotor diameter D = 126 m
and hub height H = 90 m. Under the base condition, turbine

spacing is set to 7 rotor diameters in the streamwise direc-
tion and 5 rotor diameters in the cross-stream direction. The
third farm layout considered is representative of the offshore
Horns Rev wind farm (Hansen et al., 2012). It consists of
80 Vestas V80 2 MW turbines with rotor diameter D = 80 m
and hub heightH = 70 m, arranged in a rhomboid shape. For
the considered wind direction (wd= 270◦), the farm exhibits
an aligned layout with 10 rows and 8 columns and a distance
between two consecutive turbines of 7D for both the stream-
wise and the cross-stream directions.

For all the optimisation test cases, the incoming flow is
fully aligned with the farm columns with a wind speed of
8 m s−1 in 5% ambient turbulence intensity. Wind shear and
veer are not taken into account. The sensitivity of wake steer-
ing strategies to operating conditions is only investigated for
the minimal 2×1 case, where variations in streamwise spac-
ing and ambient turbulence intensity are performed. Valida-
tion for the employed optimisation framework is conducted
by comparing results with the findings by Rak and San-
tos Pereira (2022) and is provided in Appendix B.

The optimisation problem’s objective function in all cases
is chosen to be the normalised farm power production
(Eq. 5). In all cases, we solve the constrained maximisation
problem

max
γ
G(γ )

subject to− 25◦ ≤ γi ≤ 25◦,1≤ i ≤N, (6)

which imposes typical operational bounds of ±25◦ on the
yaw misalignment of upstream turbines. In Sect. 4.3, addi-
tional constraints corresponding to modified bounds and yaw
angle monotonicity are added to the optimisation problem
(Eq. 6) to mitigate optimisation sensitivity. These constraints
are imposed by adding further linear inequality constraints
to Eq. (6) and consequently do not result in any intrinsic in-
crease in complexity of the optimisation problem.

3.1 Optimisation algorithms and parameter settings

The optimisation algorithms used are the sequential least-
squares programming (SLSQP) method developed by Kraft
(1988) and the trust region Bayesian optimisation (TuRBO)
approach by Eriksson et al. (2019). The gradient-based opti-
miser SLSQP is the standard algorithm used in the FLORIS
framework. In contrast, TuRBO uses a probabilistic approach
for the stochastic global optimisation of large-scale high-
dimensional problems, and we now give a brief overview of
this alternative algorithm. The first step is to take an initial
sample of design space via Latin hypercube sampling (LHS).
This generates near-random samples of the objective func-
tion from a multi-dimensional distribution. Two subsequent
stages then follow. First, the available samples are fitted with
a Gaussian process, a probabilistic surrogate model, to give
a posterior distribution which both approximates the objec-
tive function and determines the approximation’s uncertainty.
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Second, an acquisition function, Thompson sampling (TS) in
the case of TuRBO, is minimised to determine the next sam-
ple point at which to evaluate the objective function. The role
of the acquisition function is to find a balance between min-
imising the objective function and reducing the uncertainty
in the fitted surrogate model. The two optimisation steps are
iterated until pre-defined stopping criteria are met.

The global statistical nature of Bayesian optimisation
has been found to outperform local, gradient-based algo-
rithms when applied to multi-modal or discontinuous objec-
tive functions (Shahriari et al., 2016; Eriksson et al., 2019).
At each iteration, TuRBO’s global approach can potentially
sample from anywhere in the design space, while gradient-
based SLSQP typically takes a small step computed using
local gradients. A known drawback of Bayesian optimisa-
tion is the higher computational complexity involved in high-
dimensional problems which require a large number of ob-
jective function evaluations. To address this issue, TuRBO
uses a trust region approach in which multiple Gaussian pro-
cess surrogate models are fitted in evolving promising ar-
eas of the design space, referred to as trust regions. The
allocation of new samples to evaluate across the models is
achieved via an implicit bandit approach. Further explanation
of Bayesian optimisation is given via an illustrative example
in Appendix C.

In this study, the number of initial evaluations generated
by the LHS method is set to double the number of optimisa-
tion variables N (here the number of turbines). Moreover,
the number of trust regions is set to one. To explain this
choice, note that if multiple trust regions are used, TuRBO
will perform a multiple-starting-point search and fit a Gaus-
sian process in each trust region, thus conducting multiple
sub-searches in parallel. A single TuRBO optimisation run
would then be comparable, in complexity, to multiple SLSQP
ones. To ensure a fair comparison between the two methods,
a single TuRBO trust region is used, initialised with the same
conditions as those for each SLSQP optimisation. The pa-
rameters used for SLSQP and TuRBO optimisers are shown
in Table 2.

As is subsequently discussed for the 5× 5 case (see e.g.
Fig. 6), the considered objective functionsG(γ ) typically ex-
hibit multi-modality, flat regions, and discontinuities. Multi-
modality refers to the presence of multiple and distinct max-
ima. These features present a fundamental challenge when
seeking to robustly identify global maxima. For the TuRBO
algorithm, preliminary investigations indicated only a low
parametric influence on optimisation results, with the rec-
ommended parameter values in Eriksson et al. (2019) iden-
tified as the most sensible choice. These findings are con-
sistent with the stochastic nature of this global optimiser. In
the case of SLSQP, a sensible choice of optimisation param-
eters is required to address this complexity and to essentially
regularise the optimisation problem. The parameter to con-
sider is the precision goal for the value of the objective func-
tion in the stopping criteria, called ftol. It corresponds to the

Table 1. Wake and deflection model parameters.

Model Parameter Parameter value

Jensen k (onshore/offshore) 0.05 or 0.04
(Jiménez) kd 0.05

Multizone ke 0.05
(Jiménez) me,q [−0.5, 0.3, 1.0]

Mu,q [0.5, 1.0, 5.5]
au 12.00
bu 1.30
kd 0.05

Gaussian – GCH ka 0.380
(Bastankhah) kb 0.004

α 0.580
β 0.077
ε 0.2D
φ 2.000

Table 2. SLSQP and TuRBO parameters.

Optimiser Parameter Parameter value

SLSQP (5× 5) ftol 1× 10−16

eps [−25◦, +25◦] 5× 10−2

SLSQP (Horns Rev) ftol 1× 10−12

eps [−25◦, +25◦] 5× 10−2

eps [0◦, +25◦]
(→ constraint C1) 1× 10−1

TuRBO τsucc 3.0
τfail 25.0
Lmin 7.8125× 10−3

Lmax 1.6
Linit 0.8

achievement of equal objective function values in the eval-
uations performed for the numerical approximation of the
gradient. Large values of ftol may cause the optimiser to ter-
minate in flat regions, significantly increasing the variability
of the objective function and the optimal decision variables
to the choice of optimisation initialisation. However, a small
ftol typically increases the number of objective function eval-
uations required for convergence.

In this study, ftol= 1×10−16 for the 5×5 case is identified
as a suitable trade-off between these two behaviours, based
on preliminary investigations. For the Horns Rev case, the
value ftol= 1×10−12 is used due to the higher dimensional-
ity of the optimisation problem, i.e. its larger computational
requirements.

The second SLSQP parameter to consider is eps∈ [0,1],
corresponding to the step size (in this case equal to
eps×[25◦− (−25◦)]) used for the finite-difference gradient
approximation. Large eps values lead to inaccurate gradi-
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Figure 2. Power function of a 2×1 wind farm layout as the upstream turbine yaw angle γ1 ranged from−25◦ to+25◦. Top plots: wind farm
power PWF (a), upstream turbine power PT1 (b), and downstream turbine power PT2 (b) for 7D streamwise turbine spacing and ambient
turbulence intensity I0 = 5%. Middle plots: wind farm power PWF in I0 = 5% with variable streamwise spacing, 4D (c) and 10D (d).
Bottom plots: wind farm power PWF for 7D downstream spacing and variable turbulence intensity, I0 = 10% (e) and I0 = 15% (f).

ent approximations. However, as shown in Fig. 6, the objec-
tive functions considered in this study may have very high
gradients, discontinuities, or discontinuous derivatives, espe-
cially when using the Jensen and multizone models. This
“rough” objective function behaviour, in conjunction with
small eps values, may cause the SLSQP optimiser to identify
optimal decision variables in local maxima. A 2.5◦ step size
(eps= 0.05) is identified to be a suitable value since this rela-
tively large value of eps has the effect of artificially smooth-
ing the rough objective function while limiting the loss of
information about the local gradient.

4 Results

4.1 Two-turbine case – NREL 5 MW

We consider the problem of farm power maximisation for a
2×1 wind farm layout with NREL 5 MW turbines. The only
optimisation variable is the yaw angle γ1 ∈ [−25◦,25◦] of

the upstream turbine. The optimal yaw angle of the furthest
downstream turbine is necessarily zero since no other turbine
would benefit from a deflection in its wake, and a non-zero
yaw angle reduces the power output of this turbine. Optimi-
sation is therefore performed via a simple parameter sweep
of γ1. Different streamwise turbine spacings and ambient tur-
bulence intensity are considered to provide insights into the
sensitivity of both the optimised farm power and the optimal
yaw angle, denoted γ ∗1 , to operational conditions. Observa-
tions made for this minimal study are used to explain and
analyse the sensitivity and performance of wake steering op-
timisation for more complex farm layouts in Sect. 4.2 and
4.3.

Figure 2a, b show the extracted power PWF(γ1) of the en-
tire 2× 1 farm, PT1 (γ1) of the upstream turbine, and PT2 (γ1)
of the downstream turbine. Power production PT1 (γ1) of the
upstream machine is the same for all models. A clear sensi-
tivity to model choice is observed in Fig. 2a with the Jensen
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Figure 3. Model comparison for a 5× 5 wind farm SLSQP optimisation. (a) Optimal set points per turbine, with 12◦ initial yaw angles
illustrated in blue. The dashed lines delimit wind farm rows. (b) A 5×5 wind farm layout with the turbine naming convention. (c) Resulting
objective function (normalised farm power) for the Jensen (J), multizone (M), Gaussian (G), and Gauss–curl Hybrid (GCH) models.

model’s optimal yaw angle at γ ∗1 = 0◦, while, in contrast, all
other models have optimal yaw angles close to constraint
boundaries with γ ∗1 > 20◦. Model sensitivity is caused by
the flatness of the Jensen model’s downstream power curve
PT2 (γ1) apparent in Fig. 2b; that is, d

dγ1
PT2 (γ1) is signif-

icantly smaller for Jensen than for other models. Flatness
arises due to the uniform, or “top-hat”, profile of the Jensen
distribution (see Fig. 1), which results in a lack of sensitiv-
ity of the streamwise velocity deficit to moderate yaw per-
turbations. In contrast, it can also be seen in Fig. 1 that all
other models predict a streamwise velocity deficit which is
both larger at the centreline and decreases more rapidly in the
transverse direction. For the multizone model, this decrease
in the streamwise velocity deficit is discontinuous due to the
model’s definition of splitting the wake into various zones,
with sharp interfaces between each zone. Overall, the Gaus-
sian, GCH, and multizone models give downstream power
curves PT2 (γ1), which are more sensitive to changes in γ1
than the Jensen model.

Model sensitivity is influenced by both turbine spacing and
turbulence intensity I0. Figure 2c, d show that the optimal
yaw angle for the Gaussian, GCH, and multizone models de-
creases with increased turbine spacing. Although not shown,
γ ∗1 ≈ 0◦ for all models for spacing greater than 32D. Similar
behaviour can be observed in Fig. 2e, f as I0 increases, with
γ ∗1 ≈ 0◦ whenever I0 ≥ 15% for all models which incorpo-
rate this parameter (the multizone model does not depend
on I0). From an optimisation perspective, increased spacing
and turbulence intensity have the analogous effect of increas-
ing wake recovery and effective wake diameter at the down-
stream turbine. This reduces the sensitivity of PT2 (γ1) to γ1
and renders the wake steering optimisation problem trivial.

Despite this observation, it is clear from Fig. 2 that for any
practically relevant turbine spacing of up to 10D, and for tur-
bulence intensities of I0 ≤ 10% (at a typical 7D spacing), it
is still the case that substantial model sensitivity is present in
the 2× 1 farm power maximisation problem.

With a view towards understanding the sensitivity of wake
steering optimisation for more complex farms, it is impor-
tant to highlight the multi-modality of the farm power curves
PWF(γ1) for the Gaussian, GCH, and multizone models.
Multi-modality can be seen for all considered spacings in
Fig. 2a, c, d and for I0 ≤ 10% in Fig. 2a, e. For the Gaus-
sian model, this arises simply due to the symmetry of PT2 (γ1)
for the aligned inflow conditions considered here. Multizone
and GCH models are weakly asymmetric due to the incor-
poration of wake rotation effects, with PT2 (γ1)> PT2 (−γ1),
for γ1 > 0, in the case considered here of a clockwise spin-
ning rotor. However, the farm power PWF(γ1) curves for both
models are still clearly multi-modal.

In summary, this minimal 2× 1 case demonstrates that
wake steering optimisation can exhibit model sensitivity due
to the flatness of the Jensen model, while the Gaussian, GCH,
and multizone models exhibit multi-modal objective func-
tions. Both observations are of importance to understanding
the behaviour and sensitivity of wake steering optimisation
for the following cases of more complex farm layouts.

4.2 Multiple-turbine optimisation: 5×5 array of NREL
5 MW turbines

We consider wake steering optimisation for farm power max-
imisation on a 5×5 wind farm layout with NREL 5 MW tur-
bines. Although the Jensen model was seen to perform poorly

Wind Energ. Sci., 8, 1425–1451, 2023 https://doi.org/10.5194/wes-8-1425-2023



F. Gori et al.: Sensitivity analysis of wake steering optimisation 1433

Figure 4. Initialisation sensitivity of a 5× 5 wind farm SLSQP optimisation for the (a) Jensen, (b) multizone, (c) Gaussian, and (d) GCH
wake models. Left plot: optimal set points per turbine for the random sets “Random” of initial conditions. The dashed lines delimit wind
farm rows. Right plot: resulting objective function (normalised farm power) per initialisation case. For the turbine naming convention, refer
to Fig. 3b.

in Sect. 4.1, we still report its performance for this exam-
ple due to the Jensen model’s ongoing use in the wind en-
ergy community for wake steering applications (Kheirabadi
and Nagamune, 2019; Houck, 2021; Andersson et al., 2021).
The objective of this medium-complexity case is to under-
stand the sensitivity of wake steering performance to both

the choice of wake model and the choice and particular im-
plementation of an optimisation algorithm. Due to the high-
dimensional and multi-modal nature of the underlying opti-
misation problem in this case, statistical analysis is required
to quantify optimisation sensitivity (see Sect. 4.2.3). How-
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ever, we first study several indicative cases, which will make
the statistical results transparent.

4.2.1 Initial yaw angle sensitivity in gradient-based
optimisation

In this section, we seek to understand the interaction between
the wake model selection, the algorithm choice, and the ini-
tial yaw angles used by each optimiser. Insights from the
indicative examples given in this section will motivate and
clarify the statistical analysis of Sect. 4.2.3.

Figure 3 shows the comparison between wake models for
an SLSQP optimisation initialised with a yaw angle of 12◦

for all turbines. Significant discrepancies between models
are observed for both the predicted wind farm power im-
provement and the corresponding optimal yaw angles. Farm
power variations of up to 64% occur between models. Even
the Gaussian and the GCH wake models have an optimised
farm power difference of 30% despite the similarity in these
models’ velocity deficit distribution (see Fig. 1).

Arguably more important, from an implementation per-
spective, is the significant inter-model variation in optimal
yaw angles. For the Jensen model, Fig. 3 indicates non-zero
optimal yaw angles for only the second (at 6◦) and third rows
(at 9◦) of turbines. This counter-intuitive solution should be
viewed in the context of a 0% farm power improvement and
the power-curve flatness described in Sect. 4.1. The Jensen
model’s lack of sensitivity implies that moderate yaw an-
gle variations are essentially indistinguishable for the opti-
miser, and, consequently, a gradient-based algorithm such as
SLSQP can terminate at any point in a large set of possible
yaw angles: those obtained in Fig. 3 are just one such near-
optimal solution. Optimal yaw angle differences are also ob-
served between the Gaussian model, which saturates the up-
per bound constraints at 25◦ for all but the final turbine row,
and the GCH model, whose optimal angles monotonically
decrease with turbine rows. This is attributed to the GCH
model’s ability to capture secondary steering effects (King
et al., 2021). Finally, the multizone model’s optimal yaw an-
gles are non-monotonic with rows but also identify the non-
physical setting of 8◦ for the final row of turbines (0◦ is op-
timal). As is explored later in this section, this behaviour is
caused by optimisation sensitivity to initial yaw angles.

To further explore the sensitivity to initial yaw angles be-
tween models, Fig. 4 shows the results of 10 SLSQP optimi-
sation runs, each initialised by randomly sampling the 25 ini-
tial yaw angles from a uniform distribution on [−25◦,+25◦],
with these initial conditions then used for all four models.
These optimisation runs will be incorporated into the sta-
tistical analysis detailed in Sect. 4.2.3. All models exhibit
strong sensitivity to initial yaw angles. Interestingly, for the
Jensen and Gaussian models, while there is almost no vari-
ation in normalised farm power improvement, there is high
variability in the optimal decision variables. As discussed
in Sect. 4.1, for the Jensen model, this arises due to cost-

function flatness, and for the Gaussian model due to the
symmetric multi-modality of its objective function. A further
consequence of multi-modality, which can be seen in Fig. 4c,
is that yaw constraints may be saturated at either boundary
(i.e. at +25◦ or at −25◦) rather than uniformly at +25◦ as
in the single case shown in Fig. 1. Further, this columnwise
switching of optimal yaw angle signs has a negligible ef-
fect on the predicted farm power improvement. Such sign
inconsistency is clearly undesirable for practical implemen-
tation of wake steering since small operational perturbations
could potentially require large control input changes. This
behaviour is discussed further in Sects. 4.2.3 and 4.3.

For the multizone and GCH models, the sensitivity of both
the normalised farm power (of up to 15% and 10%, re-
spectively) and the optimal yaw angles can be observed in
Fig. 4. The multizone model (Fig. 4b) is highly sensitive
to initialisation, caused by its highly non-linear and multi-
modal farm power function – discussed in more detail in
Sect. 4.2.2 – which arises due to this model’s definition of
splitting the wake into various zones, with sharp interfaces
between each zone (see Appendix A1.2 and Fig. 1b). The
GCH model (Fig. 4d) has distinct local maxima, which is
clear from the large differences observed in the normalised
power increase across the 10 optimisation runs. Similar to
the Gaussian model, multi-modality causes negative optimal
yaw angles and columnwise variation in the sign of the op-
timal decision variables in a number of runs (e.g. “Random
7” run). However, due to the fact that the GCH model also
captures secondary steering and wake rotation effects, such
negative yaw angles and sign switches now also correspond
to sub-optimal local maxima, with an observed range of 10%
in normalised farm power for even the small number of cases
considered here.

In terms of wake model robustness, two key observations
deserve attention. Firstly, the Gaussian model demonstrates
significantly greater robustness than the multizone model
despite both models yielding similar optimal yaw settings
(Fig. 4b, c). The Gaussian model exhibits notably lower vari-
ations in farm power improvement across different initialisa-
tions. Secondly, although the GCH model (Fig. 4d) includes
additional wake features, such as secondary steering effects,
compared with the Gaussian model, it exhibits considerably
lower robustness, as evidenced by significant variations in the
resulting objective function based on the initial yaw angles.

To investigate initialisation sensitivity in more detail and
to better understand how initial yaw angles affect the optimal
yaw angles, we study one additional SLSQP optimisation run
– denoted Test Case 1 – for each of the considered models,
again initialised by sampling 25 turbine yaw angles from a
uniform distribution on [−25◦,+25◦]. The resulting optimal
yaw angles are shown in Fig. 5 (left), while the streamwise
velocity at hub height for the optimal yaw configuration is
shown in Fig. 5 (right). It is clear that the initial yaw an-
gles (blue squares) directly influence the optimal yaw angles
(red circles) for the Jensen, multizone, and Gaussian models,
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Figure 5. Test Case 1 optimisation results of a 5× 5 wind farm layout for the (a) Jensen, (b) multizone, (c) Gaussian, and (d) GCH wake
models. Left plot: SLSQP- (in red circles) and TuRBO-optimised (in green triangles) yaw angle per turbine given Test Case 1’s random set of
initial points (in blue squares). The dashed lines delimit wind farm rows. Right plot: streamwise velocity at hub height for SLSQP-optimised
yaw set points. For the turbine naming convention, refer to Fig. 3b.

both in their sign and in their absolute value. For the Gaus-
sian model, for example, the sign of the initial angle for each
turbine directly determines the sign of its optimised angle,
which either saturates the constraints or is zero if the tur-
bine is in the final row. This results in optimal yaw angles
with within-column sign oscillations, which are practically
undesirable. Their effect on the streamwise velocity fields is
shown in Fig. 5 (right).

For the GCH model in Fig. 5d, the sign influence of initial
yaw angles is still apparent, although less obvious than for
the other models. As discussed above, the resulting negative

signs and within-column oscillations of optimal yaw angles
correspond to local, not global, maxima. To quantify this ob-
servation, consider the five columns of turbines in Fig. 5d
(right) for the GCH-based optimisation. The upper column,
at y ≈ 2500 m, exhibits positive and no sign-fluctuating op-
timal yaw angles within the same column. This is in con-
trast to the other four columns, which extract, respectively,
2%, 16%, 2%, and 15% less power than the upper, positive,
sign-consistent column. Understanding the origin of these lo-
cal maxima and why the gradient-based optimiser SLSQP
identifies different maxima for different initial yaw values
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Figure 6. Farm power of a 5× 5 wind farm layout for the (a, e) Jensen, (b, f) multizone, (c, g) Gaussian, and (d, h) GCH wake models as a
function of a single turbine yaw angle. Turbine yaw settings range from−25◦ to+25◦, with SLSQP optimisation solutions as starting points
(illustrated with red circles for the swept turbine “T”). For the turbine naming convention, refer to Fig. 3b.

requires a more careful analysis of the underlying objective
function geometries, conducted and presented in Sect. 4.2.2.

Figure 5 (left) also includes the resulting optimal yaw
settings (green triangles) for the global optimisation algo-
rithm TuRBO, introduced in Sect. 3.1. Compared to SLSQP,
TuRBO appears to mitigate the influence of initial yaw an-
gles on the sign and magnitude of the optimal yaw angles
for all wake models. For the GCH model (Fig. 5d), for ex-
ample, the optimal yaw configuration exhibits mostly sign-
consistent and positive yaw angles, with the exception of
only turbines 5,10,15, and 20. In further contrast to SLSQP,
the optimal yaw angles obtained by TuRBO exhibit an ap-
proximate monotonically decreasing trend with downstream
distance, which is representative of the optimal solution for
models capturing secondary steering effects, as observed in
King et al. (2021) and Zong and Porté-Agel (2021).

These results motivate a statistical comparison of optimi-
sation sensitivity between gradient-based and global optimi-
sation approaches, which is given in Sect. 4.2.3. Before this,
we briefly study the reasons for the increased sensitivity of
gradient-based optimisation by looking more closely at the
underlying geometry of the objective function.

4.2.2 Objective function geometry

This section investigates the geometry of the farm power ob-
jective function when using different wake models. The aim
is to understand the higher initialisation sensitivity observed
in gradient-based optimisation and to provide the necessary
insights in order to propose a solution to this problem, which
is presented in Sect. 4.3.

Figure 6 shows, for each model, two planar slices through
the objective functions G(γ ) for Test Case 1. Each is ob-

tained by varying the yaw angle of a single chosen turbine (as
indicated in each subfigure), with each presented slice also
containing the optimal yaw angles obtained for each model.
All four models exhibit local extrema, confirming the multi-
modal nature of all farm power functions. Even the Gaussian
model (Fig. 6c, g), which has the smoothest objective func-
tion, has local maxima due to the optimisation constraints.
The fact that the obtained optimum in this case (shown by
the red circle in Fig. 6c) is not global is now transparently ex-
plained by the fact that the initial yaw angle (shown in Fig. 5)
of turbine T6 is of a positive sign.

The remaining three models have objective functions with
very high gradients, discontinuities, or discontinuous deriva-
tives. This is particularly prominent for the Jensen and mul-
tizone models in Fig. 6a, e, b, and f. This property is fur-
ther exacerbated by the multiple wake interactions present
for the 5×5 farm. As discussed in Sect. 3.1, a careful choice
of optimisation parameter eps can help mitigate the effect of
cost-function discontinuities. Since eps determines the step
size used for finite-difference gradient approximations, using
a larger value can smooth the objective function numerically.
However, in this case, it can be seen that even a relatively
large, and standard, choice of eps corresponding to a 2.5◦

step size may not overcome the observed rough or abruptly
changing cost function for the Jensen, multizone, or GCH
models. This suggests that an optimal value of eps may be
highly problem dependent and thus hard to identify a priori.

The intrinsically multi-modal, and often rough, nature of
farm power objective functions for the 5× 5 farm presents
a challenge for gradient-based optimisation. In Sect. 4.3 we
provide a solution to this problem for gradient-based opti-
misers. However, we first consider the possible advantage of
using a global optimisation strategy and perform a statisti-
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Figure 7. Comparison of the statistics of the objective function (a–d) and the statistics on the number of evaluations (e–h) between SLSQP
and TuRBO optimisation algorithms for a 5× 5 wind farm layout using the (a, e) Jensen, (b, f) multizone, (c, g) Gaussian, and (d, h) GCH
wake models. Mean values are illustrated with error bars for 1 standard deviation (red or green) and minimum and maximum values (black).

cal comparison of optimisation sensitivity between gradient-
based and global optimisation approaches for the 5× 5 farm
power maximisation problem.

4.2.3 Sensitivity comparison of gradient-based and
global optimisation algorithms for wake steering

In this section, we compare the performance of the SLSQP
and TuRBO optimisers described in Sect. 3.1 in terms of
the statistics of two properties: the normalised farm power
increase and the total number of wind farm evaluations re-
quired. Statistical analysis is required since SLSQP is highly
sensitive to initial conditions (see Sect. 4.2.1), and TuRBO
is stochastic by nature. Moreover, computational complexity
is compared in terms of farm evaluations rather than com-
putational time because TuRBO requires the tuning of Gaus-
sian processes. This additional computational step is highly
dependent on the problem size, and including it in the com-
parison would lead to conclusions not generalisable to other
optimisation cases. For each of the four models, wake steer-
ing optimisation is repeated 50 times per optimiser, each ini-
tialised with an independent set of random initial conditions
sampled from a uniform distribution on [−25◦,+25◦]. To en-
sure a fair comparison, SLSQP and TuRBO algorithms share
the same sets of initial yaw angles. The maximum number
of evaluations for TuRBO is set to 500, corresponding to the
observed average number of objective function evaluations
used by SLSQP. Finally, to limit the bias of extreme cases in
the function evaluation statistics, each algorithm is assumed
to be converged when 95% of the actual wind farm power
improvement is reached.

Figure 7’s upper row shows the comparison between
SLSQP and TuRBO with the mean, standard deviation, and
minimum and maximum values of normalised farm power in-

crease shown. Higher mean values are obtained for all mod-
els by the global TuRBO algorithm. Although the balance
between exploration and exploitation can represent a chal-
lenge when using global optimisers, especially in highly di-
mensional search spaces, the multi-modal nature of the farm
power function clearly gives an advantage to TuRBO’s global
approach for this 5× 5 farm configuration. Moreover, for all
models except Jensen, a lower standard deviation in the ob-
tained optimal farm power is found when using TURBO, in-
dicating that it is less sensitive to yaw angle initialisation. Re-
alistic wind farm operating conditions also include slightly
misaligned cases. For this reason, we also considered small
±2◦ variations in the wind direction. The results, which are
not included for the sake of brevity, were found to be consis-
tent with the ones in Fig. 7.

Statistics (mean, standard deviation, and minimum and
maximum values) of the number of evaluations required for
each optimiser are shown in the lower row of Fig. 7. For
all the wake models, the TuRBO algorithm requires roughly
the same or lower evaluations than SLSQP to achieve, on
average, higher wind farm power improvements. Moreover,
TuRBO exhibits lower or similar standard deviations than
SLSQP, indicating a lower impact of initialisation on com-
putational requirements.

Figure 8 presents three indicative cases to understand the
comparison between SLSQP and TuRBO optimisers for the
GCH model. These cases include the TuRBO run achieving
a farm power production closest to TuRBO’s mean power
increase and the two SLSQP runs corresponding to the mini-
mum and maximum SLSQP farm power increases. Figure 8a
shows the objective function G(γ ) whenever a farm evalua-
tion is performed by the respective optimiser. It is interesting
that the best-performing SLSQP run (blue circles) converges
after fewer iterations, and to a higher farm power, than the in-
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Figure 8. Comparison of optimisation results of a 5× 5 wind farm layout between the SLSQP and TuRBO optimisation algorithms for the
GCH wake model. Plot (a): objective function values at each evaluation for SLSQP maximum (blue circles), average TuRBO (red squares),
and SLSQP minimum (green triangles). Remaining plots: resulting streamwise velocity at hub height with optimised yaw set points for the
SLSQP maximum (b), average TuRBO (c), and SLSQP minimum (d) farm improvements.

dicative TuRBO case presented and, in fact, outperforms all
TuRBO runs (see Fig. 7d). This suggests that, if initialised in
the region of attraction of global (or near-global) maxima,
a gradient-based optimiser may exhibit faster convergence
than a generic global strategy.

The streamwise velocity flow fields at hub height for the
three considered cases are also shown in Fig. 8. Inter-column
switches and negative signs of optimal yaw angles are again
present in the worst-performing SLSQP case (see Fig. 8d and
green triangles in Fig. 8a), which requires 79% more objec-
tive function evaluations and has a 9% drop in farm power
compared with the best-performing SLSQP case (see Fig. 8b
and blue circles in Fig. 8a). This again highlights the chal-
lenge of multi-modality for gradient-based approaches. Fi-
nally, it is interesting to note that while the optimal wake ve-
locity fields in Fig. 8b and c are visually similar, they are not
identical: the TuRBO solution has 2.3% lower farm power
and requires 54% more evaluations to find it. This confirms
a possible, albeit counter-intuitive, advantage of the rapid lo-
cal convergence enjoyed by gradient-based optimisers. In-
deed, the quasi-Newton algorithm employed in SLSQP is
well known (Deuflhard, 2011) for possessing rapid locally
quadratic convergence rates, which may partially explain this
observation. It should be noted, however, that the high vari-
ability in SLSQP seen in Fig. 7, both in terms of the farm
power increase and objective function evaluations, is a bar-
rier to obtaining robust performance advantages of SLSQP
over global optimisation approaches such as TuRBO.

Although initialisation sensitivity is reduced using
TuRBO’s global optimisation strategy, within-column sign

inconsistency of the optimal yaw angles is still possible for
all wake models using both SLSQP and TuRBO algorithms,
as shown in Fig. 5. This behaviour is practically undesirable
since it suggests that large control input changes may arise
from small parametric changes (e.g. if a small change in at-
mospheric conditions requires recalculation of the optimal
yaw angles, a different distribution of within-column signs
could be obtained, which would require a large change in
yaw angles). As mentioned in Houck (2021), an excessive
yawing is undesirable and should be limited whenever pos-
sible. For wake models describing power asymmetry due to
yaw (multizone and GCH), negative signs and inter-column
switches of optimal yaw angles also correspond to local max-
ima, with losses in farm power improvement. In the follow-
ing section, we show how this issue can be overcome by
adding simple constraints which reduce the initial yaw an-
gle sensitivity of the SLSQP algorithm to enable rapid and
robust convergence to desirable local maxima.

4.3 Multiple-turbine case: the Horns Rev wind farm

In this section, the results for farm power maximisation via
wake steering optimisation are presented for the well known
Horns Rev wind farm. To the best of our knowledge, only a
small number of studies, see for instance Dou et al. (2020),
Zong and Porté-Agel (2021), and Chen et al. (2022), have
performed wake steering optimisation on this farm layout. In
Zong and Porté-Agel (2021), sign-coherent optimal yaw set-
tings are obtained using gradient-based optimisation. How-
ever, in this study, explicit knowledge of the optimal solution
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was used to define initial yaw angles to ensure optimiser con-
vergence. In contrast, Dou et al. (2020) used an evolutionary
optimisation algorithm and found optimal yaw angles whose
signs exhibit negative values and high column inconsistency,
reflecting the observations made for the 5× 5 layout consid-
ered in Sect. 4.2.3.

The first objective of this high-complexity optimisation
case is to confirm whether wake steering sensitivities uncov-
ered in the low- and medium-complexity cases transfer to a
realistic setup. The second objective is to add optimisation
constraints to try to mitigate initial yaw angle sensitivity and
to achieve coherent and interpretable optimal yaw settings
that could eventually be implementable in the field. In large-
scale optimisation problems with many design variables and
required evaluations, the TuRBO algorithm becomes compu-
tationally demanding for real-time control applications due
to the tuning of the Gaussian processes. For the Horn Rev
case, TuRBO’s computational complexity is about 2 orders
of magnitude higher than SLSQP’s. For this reason, and the
observation from Sect. 4.2.3 that SLSQP can exhibit rapid
convergence if the initialisation sensitivity is appropriately
mitigated, we only employ the SLSQP optimisation algo-
rithm in this section, using the parameters in Table 2. Note
that the Jensen model is not included in this section due to
the poor wake steering performance observed in the previous
sections.

For sensitivity mitigation, we consider two additional sets
of optimisation constraints. The constraint “C1” refers to the
case in which the yaw angles of every turbine are constrained
to be positive. The aim is to improve optimiser performance
by avoiding the maxima corresponding to within-column
yaw angles with alternating signs. Under aligned conditions,
constraining the yaw angles to be either positive or negative
is equivalent for symmetric models like the Jensen and the
Gaussian. However, when considering wake models that in-
corporate wake rotation effects, such as the multizone and
the GCH models, positive yaw angles lead to higher turbine
power production. Implementation of the C1 constraint in-
volves modifying the variable bounds from [−25◦,+25◦] to
[0◦,+25◦]. To maintain a step size of 2.5◦ for gradient ap-
proximations, the SLSQP parameter eps is adjusted to 0.1, as
outlined in Table 2. A second set of constraints, “C2”, cor-
responds to the case where the yaw angles of each turbine
(excluding turbines in the most upstream row) are forced to
be equal to or lower than the yaw angles of the upstream
turbines in the same column and is implemented in SLSQP
using linear inequality constraints. It should be noted that
these additional sets of constraints can be easily adapted to
other operating and atmospheric conditions; e.g. for a dif-
ferent wind direction, a simple permutation of the turbines’
labelling is required to specify columns which correspond to
the new downstream direction.

The investigated cases are limited to a fully aligned lay-
out, as it is the predominant condition and the one holding
the largest potential for the implementation of wake steer-

ing strategies. The analysis performed is statistical, where
each of the 50 optimisation cases per wake model is ini-
tialised with an independent set of random initial conditions
sampled from a uniform distribution on [−25◦,+25◦]. For
clarity throughout the section, optimisation performed using
only the original yaw angle bounds of [−25◦,+25◦], with-
out applying either the C1 or the C2 constraint, is referred to
as “nominal”. Optimisation cases with additional constraints
are indicated as “constrained”. Note that for the additional
constrained Horns Rev cases, a 2.5◦ step size corresponds to
eps being equal to 0.1 due to the modified variable bounds
[0◦,+25◦], as specified in Table 2.

Optimal yaw configurations for a single SLSQP optimi-
sation with a unique random set of initial conditions in the
nominal, C1, and C1+C2 optimisation cases are presented
in Fig. 9. In line with the results of Dou et al. (2020), the first
row of subfigures shows that, in the nominal case, the optimal
yaw settings obtained for the three wake models are not prac-
tical, with frequent switches between large positive and neg-
ative yaw angles within any given row or column of the wind
array. The only common trend is that the final downstream
row of turbines has optimal yaw angles close to zero. The
key message is that, without a sensitivity mitigation strategy,
the proposed yaw angle settings cannot be implemented in
real life due to obvious operational constraints.

The introduction of additional constraints clearly improves
the identification of the optimal variables. For all models, op-
timal yaw angles represent a more interpretable and practi-
cal solution. Overall, a similar performance is achieved with
the two different constrained approaches, C1 and C1+C2.
This successfully proves how the use of simple constraints,
motivated by an understanding of the optimisation problem,
can lead to considerable improvements in optimisation per-
formance. The C1 constraint forces the optimiser to avoid
the maxima corresponding to within-column yaw angles with
negative and alternating signs, which is of particular im-
portance when such maxima are sub-optimal for models
with power asymmetry due to yaw (multizone and GCH).
The C2 constraint, limited to C1+C2 cases, effectively de-
creases initialisation sensitivity by imposing column-equal
or column-monotonically decreasing optimal yaw angle so-
lutions. For the GCH model, which captures secondary steer-
ing effects, introducing constraints leads to a smoother de-
crease in optimal decision variables from row to row and to
the identification of an optimal decrease rate.

Table 3 provides the farm power improvements obtained
from the single SLSQP optimisation outlined in Fig. 9 for
the nominal, C1, and C1+C2 optimisation cases. Across
all three wake models, it is evident that the introduction of
additional constraints enhances the performance of the op-
timiser. Compared with the nominal case, the constrained
cases yield a 7%, 1%, and 4% increase in the objective func-
tion for the multizone, Gaussian, and GCH models, respec-
tively. When comparing the C1 and C1+C2 optimisation
cases, minimal or negligible differences in farm power im-
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Figure 9. Comparison of the Horns Rev wind farm optimal yaw setting for a single optimisation between the nominal, C1, and C1+C2
constrained SLSQP optimisation cases for the (a, d, g) multizone, (b, e, h) Gaussian, and (c, f, i) GCH wake models. Red and blue indicate
positive and negative yaw angles, respectively.

Table 3. Comparison of the farm power improvements for a sin-
gle Horns Rev wind farm optimisation between nominal, C1, and
C1+C2 constrained SLSQP optimisation cases for the multizone,
Gaussian, and GCH wake models.

Case Multizone Gaussian GCH
name PWFPWF(0)−1 PWFPWF(0)−1 PWFPWF(0)−1

Nominal 1.71 1.11 1.57
C1 1.82 1.12 1.63
C1+C2 1.83 1.12 1.63

provement are observed. This indicates that the introduction
of the C1 constraint alone already leads to column-equal or
column-monotonically decreasing optimal yaw angles in the
cases presented (as depicted in Fig. 9). However, to consis-
tently ensure this behaviour across various optimisation con-
ditions, the implementation of the C2 constraint is necessary.
While examining the results of a single SLSQP optimisation
is informative, a statistical analysis is required to evaluate the
benefits of implementing additional constraints to mitigate
initialisation sensitivity.

Figure 10 presents the statistical results for farm power
improvement in the nominal, C1, and C1+C2 optimisation

cases. For all wake models, a significant reduction in initial-
isation sensitivity can clearly be observed when constraints
are imposed, in terms of both standard deviation and min-
imum and maximum values. For the GCH model, depen-
dency on initial conditions in the nominal case leads to sub-
optimal solutions with potential farm power losses of up to
10% (the difference between the maximum and minimum
power increase values). With the introduction of constraints,
these losses are below 0.1%. Further, a higher mean farm
power improvement is experienced in the constrained cases
for all models. In the multizone case, avoiding sub-optimal
solutions due to constraints leads to a 12% increase in mean
farm power improvement. Finally, consistent with the con-
clusions for the medium-complexity 5× 5 case, an over-
all strong dependency of wake steering strategies on wake
model choice is observed, exhibiting significant discrepan-
cies in farm power improvement. To further explore model
sensitivity, an inter-model cross-validation is performed with
the multizone and Gaussian models’ performances evaluated
with the optimal decision variables computed using the GCH
model. As expected, both models exhibit lower normalised
farm power increases when using the optimal GCH yaw an-
gles (24% and 6% lower for the multizone and Gaussian
models, respectively). These results suggest that the row-
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Figure 10. Comparison of the Horns Rev wind farm objective function statistics between the nominal, C1, and C1+C2 constrained SLSQP
optimisation cases for the (a) multizone, (b) Gaussian, and (c) GCH wake models. Mean values are illustrated with error bars for 1 standard
deviation (red) and minimum and maximum values (black).

Figure 11. Comparison of the Horns Rev wind farm optimal yaw setting statistics between nominal, C1, and C1+C2 constrained SLSQP
optimisation cases for (a, d, g) multizone, (b, e, h) Gaussian, and (c, f, i) GCH wake models. Row-averaged probability density functions of
the optimal yaw angles are shown, with a transition from dark blue (most upstream row) to light green (most downstream row).

monotonic decrease in optimal yaw angles, attributed to the
GCH model capturing secondary steering effects (King et al.,
2021), represents a better solution to the wake optimisation
problem than is possible when using either the Gaussian or
the multizone model. This observation is in agreement with
several recent studies, including King et al. (2021), Zong and
Porté-Agel (2021), Howland and Dabiri (2021), and King
et al. (2022).

Figure 11 presents the statistical results for the optimal
yaw settings in the nominal, C1, and C1+C2 optimisation
cases. For each row in the farm layout, a probability den-
sity function of the optimal yaw angles is shown in this fig-
ure. It is defined by averaging the probability density func-
tions for the single turbines in the row. The aim is to ex-

press the distributions of optimal yaw settings per farm row
and see how they compare for different optimisation cases.
When examining Fig. 11d, e, f and g, h, i for the C1 and
C1+C2 constrained cases, respectively, it becomes evident
that the probability density functions exhibit higher magni-
tudes compared with the nominal cases shown in Fig. 11a,
b, c. With the exception of the last turbine row, the proba-
bility density function values, which are approximately 0.25
in the nominal cases, are at least twice higher when the ad-
ditional constraints are introduced in the optimisation. This
behaviour is observed across all wake models and indicates
a more consistent distribution of optimal yaw angles for dif-
ferent initialisations, thereby highlighting improved optimi-
sation robustness and reduced dependence on initial condi-
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tions for the constrained cases. For the multizone and Gaus-
sian models, optimal yaw settings in the nominal case tend
to converge at the optimisation bounds, as shown in Fig. 5
and confirmed by bi-modal probability density functions in
Fig. 11a and b. Caused by initialisation sensitivity and lack of
constraints, this undesirable behaviour of bi-modality is eas-
ily removed in the C1 and C1+C2 optimisation cases. For
the GCH model, bi-modal probability density functions can
also be identified in the nominal optimisation results. How-
ever, the peaks of the modes exhibit a more complex pattern
depending on the farm row (Fig. 11c). As for the previous
models, bi-modality is removed by the introduction of con-
straints. Finally, consistently with the discussion for the 5×5
farm layout in Sect. 4.2, significant overall discrepancies be-
tween wake models can be identified in terms of optimal yaw
angles.

The presented results indicate that the simple strategy pro-
posed for SLSQP sensitivity mitigation is effective for this
realistic and complex wake steering optimisation problem.
The enforcement of constraints successfully decreases the
impact of initial conditions in terms of both the objective
function and the optimal decision variables while achieving
generally higher farm power improvements and more con-
sistent optimal yaw settings. We note, finally, that the con-
strained gradient-based approach can simply be adapted to
misaligned wind directions. This can be achieved by permut-
ing the turbine labelling to create columns aligned with the
incoming wind direction. Either constraint C1 or constraint
C1+C2 can then be applied analogously in this situation.

5 Conclusions

A detailed investigation of the sensitivity of wake steering
optimisation for increased power output of wind farms was
carried out in this study. Sensitivity to the choice of analytical
wake models, the optimisation algorithm, and different oper-
ating conditions was assessed in terms of variability in both
optimised farm power and optimal yaw angles. The study
was performed with four different analytical wake models,
with a gradient-based and a global optimisation algorithm.
Three wind farm layouts were investigated: two generic lay-
outs with 2×1 and 5×5 turbines and a layout corresponding
to the Horns Rev wind farm with 80 turbines. This hierarchy
of test cases with increasing complexity facilitated the under-
standing of the different sensitivities present in wake steer-
ing optimisation. By conducting an analysis on initialisation
sensitivity, the nature of the farm power function, and opti-
miser statistical performance, this investigation provided in-
sight into the impact of modelling, algorithmic, and paramet-
ric choices on wake steering strategies to increase the power
output of wind farms.

For the 2×1 layout, optimisation was performed by a sim-
ple parametric sweep, removing any sensitivity to algorith-
mic choice or implementation. The results indicated a strong

sensitivity of wake steering strategies to the choice of ana-
lytical wake model and highlighted the role of flatness and
multi-modality of the objective function in wake steering op-
timisation performance.

In the medium-complexity 5× 5 case, optimisation was
first performed using the gradient-based SLSQP optimisation
algorithm. High optimisation sensitivity to the wake model
choice, in terms of both objective function and optimal de-
cision variables, was observed. All models exhibited strong
variability of the objective function and optimal yaw an-
gles to initial conditions, with sub-optimal solutions leading
to potential power improvement losses. A comparison be-
tween the gradient-based SLSQP and the global optimiser
TuRBO showed that, overall, TuRBO required fewer wind
farm evaluations and achieved larger improvements in wind
farm power production, with a reduced sensitivity to initial
conditions. Although the multi-modal and discontinuous na-
ture of the farm power function strongly affected the SLSQP
performance, the results in Fig. 8 also highlighted that rapid
convergence could be achieved if initialisation sensitivity
was reduced, motivating the sensitivity mitigation strategy
proposed in the final test case considered.

Finally, a higher-complexity optimisation was performed
with the SLSQP algorithm for the farm layout correspond-
ing to the Horns Rev wind farm (80 turbines). Optimal yaw
angles exhibited highly column-inconsistent signs, making
them unsuitable to implement in practice. It was found that
the introduction of constraints during the optimisation dra-
matically decreased the sensitivity to initial conditions while
achieving more consistent and interpretable yaw settings.
This work, therefore, demonstrates that the sensitivity of
wake steering optimisation can be mitigated either by the use
of global optimisation algorithms or by the addition of sim-
ple constraints to gradient-based algorithms. The success of a
constrained gradient-based approach is especially promising,
particularly with a view towards adaptation to new problems,
due to the simplicity and transparency of gradient-based al-
gorithms in contrast to more complex and less interpretable
global strategies.

Future work will look at the sensitivity of wind farm wake
steering optimisation for a range of wind directions and in-
flow speeds and will investigate the impact of atmospheric
conditions for more complex optimisation problems, in ad-
dition to identifying appropriate optimisation constraints to
enable sensitivity mitigation in each setting. Future research
will also focus on determining wake steering sensitivities in
an online control framework, including state estimation and
parameter-tuning algorithms.

Appendix A

A1 Wake models

The most relevant parameter in analytical wake models is the
streamwise velocity u (uw in Eq. 1) in the downstream region
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of a turbine subject to a mean freestream velocity U∞. Due
to turbine operation and the consequent wake streamwise ve-
locity deficit δu, the streamwise velocity is defined as

u= U∞(1− δu). (A1)

Considering the unsteadiness of the wake phenomenon
and its evolution in three-dimensional space, in principle, all
terms in Eq. (A1) are a function of space and time (x,y,z, t).
However, the main assumption of analytical models is the
description of a steady state, where time dependency is ig-
nored, and the focus is on equilibrium conditions. The model
formulations in this section are presented based on velocity
deficit δu(x,y,z).

A1.1 Jensen model

The Jensen model (Jensen, 1983) is a simple steady wake
model widely used in the industry. It is derived by applying
mass conservation to a control volume in the wake region
of the wind turbine and relating the velocity deficit just be-
hind the rotor to the thrust coefficient CT using Betz theory.
Hence, turbines are assumed to be actuator discs with rotor
diameter D and thrust coefficient CT = 4a(1− a), where a
is the turbine induction factor. The Jensen model is based on
two main assumptions: the conservation of the cross-stream
integral of the streamwise velocity deficit as the wake lin-
early expands downstream and the velocity deficit simply be-
ing a function of the downstream distance x. The first main
assumption implies a quadratic decay of the velocity deficit
with the linear expansion of the wake. The second one im-
plies a uniform velocity deficit in the wake, hence an axisym-
metric wake with a well-defined edge (see Fig. 1a).

The streamwise velocity deficit induced by a turbine with
diameter D, assumed to be operating at an induction factor
a, can be expressed as

δu(x,r)=

2a
(

D
D+ 2kx

)2
, if r ≤ D+ 2kx

2

0, otherwise
, (A2)

where a cylindrical coordinate system is defined with the ori-
gin at the rotor hub of the first upstream turbine. Radial and
streamwise distances are expressed by r and x, respectively,
and k represents the dimensionless expansion coefficient.

The Jensen model is based on a steady description of the
wake where turbines are modelled as actuator discs with uni-
form loading, and no notion of added turbulence intensity
due to upstream turbines’ operation is included. Moreover, it
does not conserve momentum, it is limited to far-wake pre-
dictions, and no calculation involving cross-stream and ver-
tical velocity components is included. Despite these limita-
tions, the Jensen model is simple and inexpensive. It can be
used for control and optimisation studies, and it can provide
valuable insights into power production for large wind farm
layouts under normal operating conditions.

A1.2 Multizone model

The multizone model, developed by Gebraad et al. (2014), is
a modification of the Jensen model to better describe wake
velocity profiles and partial wake overlapping, especially un-
der yawed conditions. Within a turbine wake, three zones q
are defined: near-wake zone (q = 1), far-wake zone (q = 2),
and mixing-wake zone (q = 3). They are assumed to expand
linearly with downstream distance x. Different expansion
rates are determined based on the tuned model parameters ke
and me,q . The wake diameter Dw,q for each zone is defined
as

Dw,q (x)=max
(
D + 2keme,qx,0

)
. (A3)

The velocity deficit in the three wake zones is assumed
to decay quadratically with the downstream distance rather
than being directly related to the wake expansion as in the
Jensen model. Due to the presence of different wake zones,
a smoother transition from the wake centre to freestream ve-
locity is achieved (see Fig. 1b), where the velocity deficit
spatial variables are the radial position from the wake centre
r and turbine downstream distance x. The wake remains ax-
isymmetric. Considering a turbine assumed to be operating at
an induction factor a and yaw angle γT, the mean streamwise
velocity deficit δu(x,r) can be defined as

δu(x,r)= 2ac(x,r), (A4)

where c(x,r) is the wake decay coefficient

c(x,r)=


c1 if r ≤Dw,1/2
c2 if Dw,1/2< r ≤Dw,2/2
c3 if Dw,2/2< r ≤Dw,3/2
0 if r > Dw,3/2

. (A5)

The local wake decay coefficient c(x) for each wake zone
q is expressed by

cq (x)=
[

D

D + 2kemU,q (γT)x

]2

, (A6)

where the parameter ke determines wake zone expansion and
velocity deficit recovery, while mU,q is an empirically de-
rived coefficient. For each wake zone, q, mU,q is defined as

mU,q (γT)=
MU,q

cos(aU + bUγT)
, (A7)

with the empirical parameters MU,q (ensuring outer zones’
faster recovery), aU , and bU tuned with high-fidelity simula-
tions.

The multizone wake model is a computationally inexpen-
sive model, suitable for control and optimisation studies, in-
cluding yaw applications. However, it only describes equi-
librium conditions, and it is limited to far-wake predictions.
In addition, it does not exhibit any sensitivity to inflow tur-
bulence intensity, and it does not include considerations for
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added turbulence intensity by upstream turbines. Moreover,
it involves many tuned empirical parameters, decreasing the
model confidence for a wide range of operating conditions.
Finally, it does not explicitly conserve momentum.

A1.3 Gaussian model

The Gaussian wake model was originally developed by Bas-
tankhah and Porté-Agel (2014) and has recently been im-
proved by various studies in the literature (Abkar and Porté-
Agel, 2015; Bastankhah and Porté-Agel, 2016; Niayifar and
Porté-Agel, 2016; Dilip and Porté-Agel, 2017). This steady
wake model consists of a mass- and momentum-conserving
formulation based on a simplification of the Navier–Stokes
equations. A Gaussian distribution on the streamwise veloc-
ity deficit is imposed by applying the self-similarity theory
used in shear flows (see Fig. 1c). Moreover, a linear wake
expansion is assumed. The model accounts for atmospheric
stability and added turbulence intensity due to upstream tur-
bines. Defining a three-dimensional coordinate system at the
rotor hub of the turbine, the streamwise velocity deficit in the
far wake, dependent on the three spatial dimensions (x,y,z),
is defined as

δu(x,y,z)= Ce−(y−δ)2/2σ 2
y e−(z−zh)2/2σ 2

z , (A8)

where C is the streamwise velocity deficit at the wake cen-
tre; δ the wake deflection (refer to Appendix A2); zh the hub
height of the turbine; and σy and σz the standard deviations
of the Gaussian velocity deficit at each streamwise location,
indicating the width of the wake in the cross-stream and ver-
tical direction, respectively. The general concept is to apply
a Gaussian distribution to the streamwise velocity deficit at
the wake centre, given linearly increasing cross-stream and
vertical wake widths and a cross-stream deflection due to tur-
bine yaw misalignment. The wake centre velocity deficit C
is defined as

C(x)= 1−

√
1−

CT cosγT

8
(
σyσz/D2

) , (A9)

while the standard deviations σy and σz are defined as

σy(x)= kw(x− x0)+ σy0, (A10)
σz(x)= kw(x− x0)+ σz0. (A11)

All quantities with the subscript “0” represent wake prop-
erties at the far-wake onset (the end of the near wake) and
depend on the turbine thrust coefficientCT and turbulence in-
tensity I (Eq. A18). The near-wake length is computed with

x0 =
D cosγT

(
1+
√

1−CT
)

√
2
(
4αI + 2β

(
1−
√

1−CT
)) , (A12)

where α and β are the tuning parameters governing the in-
fluence of turbulence and thrust coefficient on the near-wake

end location, respectively. Far-wake onset wake widths in the
vertical (σz0) and cross-stream (σy0) directions are defined as

σz0 = 0.5D
√

uR

U∞+ u0
, (A13)

σy0 = σz0 cosγT, (A14)

with the velocity at the turbine rotor uR and the velocity in
the near wake u0 (assumed as constant) computed with

uR =
U∞CT

2
(
1−
√

1−CT
) , (A15)

u0 = U∞
√

1−CT. (A16)

For additional details on the derivations of far-wake onset
quantities, refer to Bastankhah and Porté-Agel (2016).

In the Gaussian model formulation, kw represents the main
parameter. It defines the rate of linear wake expansion, and
it accounts for ambient and added turbulence intensities. It is
expressed by

kw = kaI + kb, (A17)

where ka and kb are tuning parameters defining the weight of
the turbulence intensity and fundamental wake recovery, and
I represents the turbulence intensity, expressed as

I =

√√√√ N∑
j=0

(
I+j

)2
+ I 2

0 . (A18)

N is the total number of turbines influencing the reference
turbine, and I considers both I0, the ambient turbulence in-
tensity, and I+j , the added turbulence intensity due to an up-
stream turbine j . Given an overlap area Aoverlap between the
wake of an upstream turbine j and the turbine of interest,
I+j is defined by the empirical expression by Crespo et al.
(1999):

I+j = Aoverlap

(
0.5a0.8

j I 0.1
0
(
x/Dj

)−0.32
)
, (A19)

where the coefficients are tuned with LES simulations by
King et al. (2021). For additional details on added turbulence
calculations, refer to Niayifar and Porté-Agel (2016).

Although the wake model complexity is increased, the
Gaussian wake model is still suitable for control and opti-
misation applications. Additional considerations include am-
bient and added turbulence intensity, and the wake model
explicitly conserves momentum. The main limitations are
the formulation based on a free shear approximation of
the Navier–Stokes equations and the inaccurate near-wake
predictions. Moreover, it does not compute crosswise and
streamwise velocity components, both critical for modelling
wake steering effects, and it relies on multiple empirical co-
efficients, decreasing the range of conditions for suitable pre-
dictions.

Wind Energ. Sci., 8, 1425–1451, 2023 https://doi.org/10.5194/wes-8-1425-2023



F. Gori et al.: Sensitivity analysis of wake steering optimisation 1445

A1.4 Gauss–curl Hybrid model

The Gauss–curl Hybrid (GCH) model (King et al., 2021) ex-
tends the modelling capabilities of the Gaussian model by
implicitly modelling wake rotation and counter-rotating vor-
tices due to yaw misalignment, allowing the description of
wake asymmetry, added yaw-based wake recovery, and sec-
ondary steering effects. The Gaussian model formulation is
improved by introducing analytical approximations based on
the Curl model (Martínez-Tossas et al., 2019), a recently
developed linearised RANS formulation with an increased
computational complexity of around 1000× compared with
the Gaussian model. Further developments of the Curl model
are included in Zong and Porté-Agel (2021). This section
provides an overview of the GCH wake model. For additional
details on the calculations, refer to King et al. (2021).

Wake rotation is included by modelling a Lamb–Oseen
vortex, where its circulation strength is dependent on the tur-
bine axial induction factor and tip-speed ratio. The counter-
rotating vortex system due to turbine yaw misalignment is
modelled as two single vortices released at the top and the
bottom of the rotor, with the vortex strength dependent on
the turbine thrust coefficient and yaw angle. For each vortex
described, cross-stream V and vertical W velocity compo-
nents are calculated and linearly combined. Ground effects
are considered by adding mirrored vortices below the ground.
The vortex combination of the velocity components can be
expressed by

Vwake(x,y,z)= Vtop+Vbottom+Vwake rotation,

Wwake(x,y,z)=Wtop+Wbottom+Wwake rotation. (A20)

Vortex dissipation with downstream distance is computed
as

V (x,y,z)= Vwake(x,y,z)

(
ε2

4νT
(x−x0)
U∞
+ ε2

)
,

W (x,y,z)=Wwake(x,y,z)

(
ε2

4νT
(x−x0)
U∞
+ ε2

)
, (A21)

where ε is the vortex core size (ε = 0.2D in this study), and
νT is the turbulent viscosity, defined with a mixing length
model.

As presented in King et al. (2021), added wake recovery
due to turbine yaw misalignment is considered by updating
the turbulence intensity with an additional component Imix
due to yaw-enhanced mixing. The updated turbulence inten-
sity Iupdated is expressed as

Iupdated = I +φImix, (A22)

where the tuning parameter φ is introduced due to the analyt-
ical approximations at the base of Imix calculations. Iupdated
directly affects the wake expansion as specified in Eq. (A17)

(Appendix A1.3). Imix is calculated with

Imix =

√
2
3Ke,tot

U
− I, (A23)

with Ke,tot representing the total turbulent kinetic energy in-
cluding yaw effects. Using approximate solutions for veloc-
ity fluctuations in three dimensions, Ke,tot can be expressed
by

Ke,tot = 0.5
(
u′2+

(
v′+ vcurl

)2
+
(
w′+wcurl

)2)
. (A24)

Cross-stream and vertical velocity fluctuations are defined
as the sum of the average cross-stream v′ and vertical w′ ve-
locity contributions at the turbine and the upstream turbine
contributions vcurl and wcurl from Eq. (A21). Streamwise ve-
locity fluctuations u′ are derived from the turbulent kinetic
energy Ke, based on the ambient turbulence intensity, and
are defined as

u′ =
√

2Ke,where Ke =
3
2

(
UI
)2
. (A25)

Considering yawed upstream turbines, secondary steering
refers to the phenomenon of downstream turbines without
yaw misalignment experiencing wake deflection and defor-
mation due to the interaction between upstream-generated
vortices and downstream turbine wake rotation (see Fig. 1d).
The GCH wake model captures secondary steering effects by
computing an effective yaw angle γeff, the yaw misalignment
that a downstream turbine would require to produce the same
cross-stream velocity component Veff as the average one cal-
culated at its rotor due to upstream vortices V . γeff is com-
puted as

γeff = argmin|V −Veff|, where Veff = Vwake(γT). (A26)

Defining γturb as the rotor misalignment to the wind, the
total yaw angle γT at the turbine rotor, consequently used
in the wake deflection calculations (Appendix A1.3), is ex-
pressed as

γT = γturb+ γeff. (A27)

Although crosswise and vertical velocity components are
not explicitly modelled, the GCH wake model is capable of
capturing, through analytical approximations, the increase in
wake recovery due to yaw misalignment and secondary steer-
ing effects. The latter is particularly important when consid-
ering large wind farms and evaluating wake steering control
strategies. However, GCH-added complexity results in 3.5×
higher computational requirements. Moreover, the parameter
dependency for the Gaussian model still persists.

A2 Deflection models

When a turbine is yawed, the unbalance of thrust on the rotor
leads to a cross-stream momentum gain and a deflection of
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the wake in the direction of yaw. Deflection models aim at
quantifying this shift on the streamwise distance x and ap-
plying it to the streamwise velocity deficit field. All analyt-
ical models investigated in this study describe the velocity
vector in one dimension only, leading to yaw solely affect-
ing the streamwise velocity. Estimations of cross-stream and
vertical velocity components are included in the GCH wake
model (Appendix A1.4), where an additional correction to
the streamwise velocity field is applied based on these em-
pirical estimations.

A2.1 Jiménez model

The Jiménez deflection model is based on the empirical for-
mulation proposed by Jiménez et al. (2009). The two main
assumptions are as follows. First, the streamwise velocity
deficit values are almost negligible compared with inflow
velocity U∞− δu' U∞. Second, the wake skew angle ζ is
small enough that cos(ζ )' 1 and sin(ζ )' ζ . Considering a
turbine offset to the freestream by a yaw angle γT, the wake
angle at the centreline is defined as

ζ (x,γT,CT)≈
(ζinit(CT,γT))2

1+ 2kd
x
D

,

ζinit(γT,CT)= 0.5cos2γT sinγTCT,

(A28)

where kd is a tuneable deflection parameter. The amount of
wake deflection δ(x) can be calculated by skew angle inte-
gration. Ambient turbulence intensity can be indirectly taken
into account through the kd parameter. However, no consid-
erations for added turbulence intensity and wake rotation are
provided. Moreover, wake meandering is not accounted for
due to the model’s steady-state description.

A2.2 Bastankhah model

The Bastankhah deflection model is based on the budget
analysis of the continuity and Reynolds-averaged Navier–
Stokes equations conducted by Bastankhah and Porté-Agel
(2016). Using vortex theory, the wake deflection angle at the
rotor is defined by

θ ≈
0.3γT

cosγT

(
1−

√
1−CT cosγT

)
. (A29)

By assuming the validity of Eq. (A29) is not limited to the
calculation of the flow angle at the rotor but that it extends to
the near-wake region, and by approximating the near-wake
deflection to a constant value, the far-wake onset wake de-
flection δ0 can be expressed as

δ0 = x0 tanθ, (A30)

where x0 is defined in Appendix A1.3. The total far-wake
deflection due to wake steering is defined as

r
δ(x)
D
=
δ0

D
+

θ

14.7

√
cosγT

k2
wCT

(
2.9+ 1.3

√
1−CT−CT

)

ln


(
1.6+

√
CT
)(

1.6
√

8σyσz
D2 cosγT

−
√
CT

)
(
1.6−

√
CT
)(

1.6
√

8σyσz
D2 cosγT

+
√
CT

)
 , (A31)

with the main affecting factors being turbine operating con-
ditions and ambient and added turbulence intensity.

Expressions for the symbols in the above equation are pro-
vided in Appendix A1.3. Refer to Bastankhah and Porté-
Agel (2016) for details on the model derivation. The Bas-
tankhah deflection model does not include considerations
about asymmetry due to wake rotation, calculations of ver-
tical and cross-stream velocity components, or the effect of
wake meandering due to the steady nature of the model pre-
dictions.

Appendix B

In this appendix, the validation of the presented optimisa-
tion framework is provided. The optimisation problem in
Rak and Santos Pereira (2022) is replicated, and results for
the Jensen, Gaussian, and GCH wake models are compared.
A single column of aligned NREL 5 MW turbines is opti-
mised for farm power maximisation. The yaw angle of each
turbine in the farm layout is set as a variable bounded by
[50◦,+50◦]. The SLSQP optimisation algorithm by Kraft
(1988) is used. Moreover, optimiser parameters and initial
yaw settings are matched to the values provided in Rak and
Santos Pereira (2022). The farm layouts and atmospheric
conditions optimised are shown in Table B1. Results are pro-
vided in Fig. B1. Overall, a satisfactory agreement is reached.
The trends for the optimal variable solutions are captured for
all wake models. Moreover, a close match for optimal yaw
angles can be observed, except for a few isolated conditions.
These marginal discrepancies are attributed to some of the
wake model parameters not being specified in Rak and San-
tos Pereira (2022) and to the use of different FLORIS ver-
sions (2.4 in the current work, 2.2 in Rak and Santos Pereira,
2022).
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Figure B1. Validation of the presented optimisation framework. Results are shown for the optimal turbine yaw angle comparison with Rak
and Santos Pereira (2022) for the (a) Jensen, (b) Gaussian, and (c) GCH wake models.

Table B1. Investigated wind farm layouts and atmospheric condi-
tions from Rak and Santos Pereira (2022).

Case name ws wd TI0 spacing
[m s−1] [◦] [%] [D]

Reference case (RC) 8.0 270.0 7.5 7.0
High wind speed (HWS) 13.0 270.0 7.5 7.0
Wind direction 275◦ (WD 275) 8.0 275.0 7.5 7.0
Low turbulence intensity (LTI) 8.0 270.0 5.0 7.0
Small spacing (SS) 8.0 270.0 7.5 5.0
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Appendix C

This appendix shows an illustrative example of a simple one-
dimensional minimisation problem with Bayesian optimisa-
tion. The presented approach does not specifically refer to the
TuRBO algorithm (described in Sect. 3.1) but rather aims to
provide the reader with the general concepts and terminol-
ogy of Bayesian optimisation. Before analysing the specific
minimisation problem, a summary of the general idea behind
Bayesian optimisation is provided. First, an initial sampling
of the design space is performed (e.g. using Latin hyper-
cubes, Sobol sequences, Hammersley sequences, or Monte
Carlo sequences). Second, the true objective function to be
minimised is approximated with a surrogate model, usually a
Gaussian process. This probabilistic model provides a pos-
terior distribution with a mean and variance of the surro-
gate model. Next, a new sample point at which to evalu-
ate the underlying objective function is computed. This is
achieved by minimising a criterion specified through an ac-
quisition function. Commonly used acquisition functions in-
clude probability of improvement (PI), expected improve-
ment (EI), Thompson sampling (TS), and upper confidence
bound (UCB). As more samples are evaluated, the surrogate
model aims to improve its representation of the true function
until meeting a specified convergence criterion.

Figure C1. Illustrative example of a one-dimensional minimisation problem using Bayesian optimisation. Each subplot refers to an iteration
of the optimisation algorithm and includes the evaluated points (filled black circles), the posterior mean (black line) and uncertainty (blue
shaded area), the true function (dashed green line), the acquisition function (red line), and the location of the next evaluation point (dashed
red line).

As an indicative one-dimensional example of a multi-
modal objective function, let us consider the problem of min-
imising

f (x)=−(1.4− 3x)sin(18x), 0.4≤ x ≤ 1.1. (C1)

Figure C1 shows the development of the Gaussian process
posterior over eight iterations of a typical Bayesian optimi-
sation implementation using an expected improvement (EI)
acquisition function. Each subfigure includes the evaluated
points (filled black circles), the posterior mean (black line)
and uncertainty (blue shaded area), the true function (dashed
green line), the acquisition function (red line), and the loca-
tion of the next evaluation point (dashed red vertical line).
The initial design space sampling is shown in Fig. C1a and
consists of three randomly located points close to a local min-
imum. In Fig. C1b, g, the EI acquisition function selects new
evaluation points, progressively reducing the posterior uncer-
tainty and improving the mean prediction of the true func-
tion. Due to the EI function balancing exploitation and ex-
ploration, the newly selected points focus on evaluating the
minimum of the posterior mean and also on exploring areas
with high uncertainty. Finally, the minimum of the posterior
mean approximately coincides with the true global minimum
in Fig. C1h.
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