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A B S T R A C T

Direct numerical simulation (DNS) provides unrivalled levels of detail and accuracy for simulating turbulent
flows. However, like all numerical methods, DNS is subject to uncertainties arising from the numerical
scheme and input parameters (e.g. mesh resolution). While uncertainty quantification (UQ) techniques are
being employed more and more to provide a systematic analysis of uncertainty for lower-fidelity models,
their application to DNS is still relatively rare. In light of this, the aim of this work is to apply UQ and
sensitivity analysis to the DNS of a canonical wall-bounded turbulent channel flow at low Reynolds number
(𝑅𝑒𝜏 = 180). To compute the DNS, Incompact3d – a highly scalable open-source framework based on
high-order compact finite differences and a spectral Poisson solver – is used as a black-box solver. Stochastic
collocation is used to propagate the input uncertainties through Incompact3d to the output quantities of
interest (QOIs). To facilitate the non-intrusive forward UQ analysis, the open-source EasyVVUQ package is
used to provide integrated capability for sampling, pre-processing, execution, post-processing, and analysis of
the computational campaign. Three separate UQ campaigns are conducted. The first two examine the effect
of domain size and the numerical parameters (e.g. mesh resolution, time step, sample time), respectively,
and adopt Gaussian quadrature rules combined via tensor products to sample the multi-dimensional input
space. Finally, the third campaign investigates the performance of a dimension-adaptive sampling strategy
that significantly reduces the computational cost compared to the full tensor product approach. The analysis
focuses on the cross-channel statistical moments of the QOIs, as well as local and global sensitivity analyses
to assess the sensitivity of each QOI with respect to each individual input. This enables an assessment of the
robustness and sensitivity of DNS to the user-defined numerical parameters for wall-bounded turbulent flows,
and provides an indication of suitable ranges for defining the values of these parameters.
1. Introduction

Turbulent flows govern the behaviour of many natural and en-
gineering systems, from arterial blood flow to aircraft aerodynamics
and industrial process mixing, to name a few. Such flows are charac-
terised by complex and chaotic dynamics that span disparate spatial
and temporal scales [1]. These characteristics make it difficult to
model turbulent flows using traditional analytical approaches. While
the Navier–Stokes equations constitute a broadly accepted mathemat-
ical model to describe the dynamics of a turbulent flow, they can be
extremely challenging to solve, due to the chaotic and inherently multi-
scale nature of turbulence. The smallest scales influence the largest
scales, which are typically separated by several orders of magnitude.
Furthermore, small changes to initial conditions, boundary conditions,
or mesh resolution, for example, can have a dramatic impact on the
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final solution. Direct numerical simulation (DNS) aims to resolve all
of these scales and, as a result, is the gold standard for providing in-
depth analysis of flow physics, developing new theory, and validating
lower-fidelity models [2]. However, even with today’s state-of-the-art
algorithms and petascale high-performance computing (HPC) systems,
DNS is only feasible for a small class of problems, namely, those at
low-moderate Reynolds numbers with simple geometries. While this
is a major limitation of DNS, significant effort has been dedicated to
this area, and advances in algorithms and hardware are continuously
pushing the frontier of what is achievable (e.g. see Lee and Moser [3]).

Another major challenge with DNS is assessing the accuracy and
reliability of a simulation [4]. Numerical simulations are inherently
uncertain due to various sources of error and variability, such as
modelling assumptions, initial and boundary conditions, and choice
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of discretisation scheme, to name a few [5]. This uncertainty makes
it difficult to interpret the results of a simulation, particularly for
real-world decision-making. To mitigate against this issue, verification,
validation, and uncertainty quantification (VVUQ) techniques provide a
way to assess a model’s reliability and ensure its outputs are actionable
in the real world [6,7]. Verification and validation are the foundation
of most computational fluid dynamics (CFD) studies and are often used
to demonstrate the credibility of the results. Uncertainty quantification
(UQ), on the other hand, is an area that is typically overlooked in
most CFD studies. Beyond performing mesh-independence studies, it
is rare to see rigorous sensitivity analyses of input parameters or UQ
studies demonstrating forward propagation of uncertainties to build
a statistical picture of a model’s performance. This is most likely
due to the computational cost and added complexity associated with
performing such studies. However, these days, with advances in hard-
ware/algorithms and the availability of open-source libraries that can
handle such workloads automatically (e.g. see Richardson et al. [8]
and Rezaeiravesh et al. [9]), this is an area that should be considered
more often to provide a measure of confidence in a model. This is es-
pecially true if a model is to be translated from academic to real-world
applications, where engineers require a measure of the uncertainty to
make informed decisions (particularly in safety-critical applications).

Lucor et al. [10] were one of the first to apply systematic UQ and
sensitivity analysis to scale-resolving simulations of turbulent flows.
In particular, they applied non-intrusive generalised polynomial chaos
(gPC) to study the effect of the Smagorinsky constant in large eddy
simulations (LES) of homogeneous isotropic turbulence. Their results
showed that sensitivity to the Smagorinsky constant mainly manifests
in the small-scale behaviour. Similar techniques have also been ap-
plied to investigate the behaviour of the mixing layer instability. For
example, Ko et al. [11] combined gPC with DNS to investigate the
sensitivity of a 2D mixing layer to uncertainties in the inlet boundary
conditions. On the other hand, Meldi et al. [12] examined the effect
of mesh resolution and Smagorinsky constant for the LES of a 3D
mixing layer, showing that the Smagorinsky constant is the dominant
parameter responsible for the majority of the observed variance. Similar
approaches have also been adopted to examine the sensitivity of LES
in turbulent combustion [13], and to help explain the dispersion in
previously reported LES results for the flow around a rectangular
cylinder [14]. In addition to this, Congedo et al. [15] compared both
Reynolds-averaged Navier–Stokes (RANS) and LES for turbulent pipe
flow with an axisymmetric expansion, while also taking into account
the uncertainty in the experimental measurements used to define the
inlet conditions. The results showed that, under certain flow config-
urations, the RANS approach does not accurately capture the mean
flow features. Furthermore, the variance associated with the uncertain
inputs can be high. On the other hand, LES showed good agreement
and small variance for all considered flow conditions.

The canonical channel flow test case, constructed by driving the
flow between two infinitely long parallel plates, is a popular benchmark
for validating CFD codes. As a result, it has also become a popular
case for UQ studies of scale-resolving simulations. Meyers and Sagaut
[16] applied under-resolved DNS to investigate the grid convergence
behaviour in a channel flow. They showed that there is a line of com-
binations of streamwise and spanwise mesh resolution where the error
in the skin friction is zero, due to error balancing in the discretisation.
Furthermore, they also showed that these errors mainly manifest in
the second-order velocity moments. More recently, Oliver et al. [17]
developed a Bayesian extension of Richardson extrapolation to estimate
discretisation error, while also accounting for the sampling error (due
to finite time-averaging). Safta et al. [18] estimated the probability dis-
tribution of LES subgrid-scale model parameters by applying Bayesian
inference to DNS data of forced isotropic turbulence. Following this,
forward UQ was applied to LES of a channel flow to propagate the
uncertainty through to the flow solution. Two recent studies have
2

examined the uncertainties arising from LES of a channel flow within
OpenFOAM, including the sensitivity to grid resolution, wall model,
and subgrid model, to name a few [19,20]. More recently, this work
was extended and applied to Nek5000 [21].

Based on the above, it is clear that so far the majority of the work
on UQ of scale-resolving simulations of wall-bounded turbulence has
focussed on LES, with DNS usually providing a reference for bench-
marking. In light of this, the purpose of this work is to apply VVUQ
techniques to DNS, with the aim of propagating uncertainties and
assessing the sensitivity of certain quantities of interest (QOIs) with
respect to various input parameters. The high-order compact finite
difference flow solver Incompact3d is used to perform DNS of a
turbulent channel flow at a friction Reynolds number of 𝑅𝑒𝜏 = 180.
To perform the UQ analysis, the EasyVVUQ package – a Python library
designed to facilitate VVUQ workflows on HPC systems – is adopted.
Three separate UQ campaigns are carried out. The first investigates
the effect of the domain length along the two periodic (streamwise
and spanwise) directions. The second campaign investigates the ef-
fect of five numerical parameters: mesh spacing in each direction,
time step size, and the length of time the statistics are collected
for. Finally, the third campaign repeats the second campaign using
a dimension-adaptive sampling strategy to significantly reduce the
number of samples required. In the following sections the flow solver
and UQ approach are introduced, followed by a description of the case
and campaign setup. Finally, the results are presented and discussed for
each campaign, before concluding with suggestions for future work.

2. Methods

2.1. Flow solver

The numerical simulations presented in this work are performed
with the high-order compact finite-difference flow solver Incom-
pact3d [22], which is part of the open-source framework of flow
solvers Xcompact3d [23]. The governing equations are the unsteady
three-dimensional incompressible Navier–Stokes equations, given by:

∇ ⋅ 𝐮 = 0 (1)

𝜕𝐮
𝜕𝑡

+ 1
2
[∇(𝐮⊗ 𝐮) + (𝐮 ⋅ ∇)𝐮] = −1

𝜌
∇𝑝 + 𝜈∇2𝐮 + 𝐅 (2)

where 𝐮 is the velocity vector, 𝑡 is time, 𝜌 is mass density, 𝑝 is pressure,
𝜈 is the kinematic viscosity, and 𝐅 accounts for any external forcing.
Note that Eq. (2) is given in skew-symmetric form to reduce aliasing
errors [24].

Eqs. (1) and (2) are discretised using sixth-order compact finite-
difference stencils. For time integration, an explicit third-order Adams–
Bashforth scheme is adopted. This is combined with an implicit Crank–
Nicolson scheme for the diffusive terms in the wall-normal direction to
circumvent the stability constraints imposed by the non-uniform mesh
resolution used to properly resolve the near-wall effects. The pressure
Poisson equation (PPE), which enforces incompressibility, is solved
entirely in spectral space via the use of relevant three-dimensional fast
Fourier transforms (FFTs). Through the use of a modified wavenum-
ber [25], the divergence-free condition is ensured up to machine ac-
curacy. To avoid the spurious pressure oscillations observed in fully-
collocated approaches [22], the pressure field is defined offset (by half
a mesh width) with respect to the velocity field. The simplicity of
the structured mesh allows easy implementation of a two-dimensional
domain decomposition strategy, based on pencils, using the message
passing interface (MPI) [26]. The computational domain is split into
several subdomains (pencils), each of which are assigned to an MPI
process. The derivatives and interpolations in the 𝑥, 𝑦, and 𝑧 direction
are performed from within the 𝑋, 𝑌 , and 𝑍 pencils, respectively. The
three-dimensional FFTs required by the PPE solver are performed as a
series of one-dimensional FFTs, computed in one direction at a time.
Global transpositions to switch from one pencil to another are per-
formed via the MPI command MPI_ALLTOALL(V). Incompact3d
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has been extensively validated on a variety of turbulent flows [27–
29] and shown to scale well on up to hundreds of thousands cores on
CPU-based supercomputers [23,26].

2.2. Uncertainty quantification

The focus of this study is the forward UQ problem, where uncer-
tainties in the input parameters are propagated through the model to
generate statistical moments of the output QOIs. As a complement to
UQ, sensitivity analysis is also performed, where the sensitivity (i.e. the
relative contribution of the input parameters to the observed variance)
of the QOIs are quantified with respect to each uncertain input parame-
ter. There are a number of methods for this type of analysis. However,
a requirement for this work is the approach should be non-intrusive,
so that no modifications to the underlying code are required. Such
techniques usually work by collecting samples (running simulations) at
various points in the uncertain input space and computing the required
statistics as a post-processing step. Response surface methods (e.g.
stochastic collocation, gPC) are a subset of these methods that work
by constructing a relatively cheap surrogate model of the QOIs with
respect to the uncertain inputs. Through a judicious choice of the sam-
ple locations (usually via quadrature rules) exponential convergence is
possible [30] and, as a result, these methods are usually more sample-
efficient than brute-force statistical approaches (e.g. Monte Carlo) [31].
This work adopts the stochastic collocation method, which is similar in
many regards to the popular gPC approach, with the main difference
being in the choice of polynomial used to construct the underlying
surrogate model [30].

All of the UQ analyses in this work are carried out using the
EasyVVUQ library [8], a Python package designed to facilitate VVUQ
workflows. EasyVVUQ automatically handles sampling, pre-processing,
execution, post-processing, and analysis, and has been successfully
applied to problems involving nuclear fusion [32], population migra-
tion [33], and COVID epidemiology [34], to name a few. EasyVVUQ
is part of the Verified Exascale Computing for Multiscale Applications
(VECMA) toolkit [35], which is a suite of tools to facilitate VVUQ on
HPC systems and includes packages for code coupling and job submis-
sion and management, all of which are interoperable with each other.
This is exploited in the present work, where the dimension-adaptive
campaign, which is sequential in nature, combines EasyVVUQ with
the FabSim3 library [36] to enable an automated workflow on HPC
systems. This allows the EasyVVUQ campaign to be executed locally,
while individual samples (simulations) are offloaded to a remote HPC
system for execution with Incompact3d.

2.2.1. Stochastic collocation
The main idea behind stochastic collocation is to construct a poly-

nomial approximation to the output QOIs as a function of the uncertain
inputs. This is generated by sampling the input space at various lo-
cations and then building 1D Lagrange polynomials that can be used
to interpolate the QOIs onto new locations within the input space.
For multi-dimensional problems, the polynomial approximation is con-
structed via a tensor product of the 1D Lagrange polynomials. Given
a generic QOI 𝑞 in the stochastic (uncertain) input space 𝝃 ∈ R𝑑 ,
the polynomial approximation at any point in the input space is given
by [30]:

𝑞(𝝃) ≈
𝑚1
∑

𝑗1=1
⋯

𝑚𝑑
∑

𝑗𝑑=1
𝑞
(

𝜉(𝑗1)1 ,… , 𝜉(𝑗𝑑 )𝑑

)

𝐿(𝑗1)
1 ⊗⋯⊗𝐿(𝑗𝑑 )

𝑑 (3)

where 𝑚𝑖 is the number of collocation points required to generate the
1D Lagrange polynomial for the 𝑖th input 𝜉𝑖 (which is determined by
the polynomial order), and 𝐿(𝑗)

𝑖 is the 𝑗th Lagrange basis polynomial
for the 𝑖th input:

𝐿(𝑗)
𝑖 =

𝑚𝑖
∏

𝑘=1

𝜉𝑖 − 𝜉(𝑘)𝑖

𝜉(𝑗)𝑖 − 𝜉(𝑘)𝑖

(4)
3

𝑘≠𝑗
ach input is assigned its own independent probability distribution,
hich, if available, should be informed by prior knowledge. The goal
f UQ is to propagate these probability distributions through the model
o get the corresponding statistical moments of the output QOIs.

The stochastic collocation expansion provides three main uses: (1)
surrogate model to interpolate QOIs onto unsampled locations in the

nput space; (2) estimates of the first two statistical moments (mean
nd variance) of the QOIs; (3) variance-based global sensitivity analysis
e.g. Sobol indices). The Sobol indices provide an indication of the
elative influence of an input (or combination of inputs) for a given
OI [37]. These are calculated by computing the normalised partial
ariance for a given multi-index:

𝑢 =
𝐷𝑢
𝐷

(5)

where 𝐷 = Var(𝑞) is the total variance of 𝑞, and 𝐷𝑢 is the partial
variance associated with the multi-index 𝑢, which can be any subset of
{0,… , 𝑑}. For more details on how the statistical moments and Sobol
indices are computed, the reader is referred to Gerstner and Griebel
[38] and Tang et al. [39].

An important part of UQ is providing an assessment of the model’s
robustness with respect to the uncertain inputs. For example, for a
CFD practitioner, it is useful to know if small changes in the inputs
lead to large changes in the outputs, as this would raise concerns
around the robustness of the CFD model. This type of analysis requires
quantifying the degree to which uncertainty in the input parameters is
amplified/dampened by the model and manifested in the output QOIs.
To aid with this assessment, the present work adopts the coefficient of
variation ratio (CVR) metric, defined in Edeling et al. [34]. The CVR
is defined as the ratio between the coefficients of variation (CV) for a
given QOI and the input parameters. The CV itself is the ratio between
the standard deviation and mean of a random variable and provides a
dimensionless measure of its variability. Therefore, the CVR provides a
relative measure of the output-to-input variability and is given by:

CVR(𝑞) = CV(𝑞) ∕ CV(𝝃) =
|

|

|

|

𝜎(𝑞)
𝜇(𝑞)

|

|

|

|

∕

(

1
𝑑

𝑑
∑

𝑖=1

|

|

|

|

𝜎(𝜉𝑖)
𝜇(𝜉𝑖)

|

|

|

|

)

(6)

where 𝜇(𝑞) and 𝜎(𝑞) represent the mean and standard deviation of 𝑞,
hich are provided by the stochastic collocation expansion. For the

nput parameters, the statistical moments can be calculated from the
ser-defined probability distributions. A CVR value greater than one
ndicates amplification of uncertainty, whereas a CVR value smaller
han one indicates damping.

The sampling strategy for stochastic collocation should be chosen
ased on the defined probability distributions of the uncertain inputs.
ssuming appropriate Gaussian quadrature is adopted, exponential
onvergence of the polynomial approximation is possible [30]. For
ulti-dimensional problems, a tensor grid of quadrature points is re-

uired to sample the input space. Therefore, in general, the number of
equired samples is given by 𝑁 = 𝛱𝑑

𝑖=1𝑚𝑖. Based on this, it is clear to
ee that stochastic collocation still suffers from the curse of dimension-
lity and, as a result, typically becomes intractable for moderate/high-
imensional problems (e.g. 𝑑 > 5). One approach to mitigating this is to
dopt a dimensionality-reducing strategy, as discussed in the following
ection.

.2.2. Dimension-adaptive sparse-grid sampling
In general, for real-world problems, it is unlikely that all uncertain

nputs will have equal importance with respect to their effect on
he output QOIs. Therefore, a ‘smart’ sampling strategy that exploits
his effective low-dimensionality can significantly reduce the num-
er of samples required. In addition to the full tensor grid approach
escribed in the previous section, this work also adopts a dimension-
daptive scheme to investigate the potential of such methods for UQ
f scale-resolving turbulent simulations. The basic idea behind the
imension-adaptive approach is to combine nested anisotropic sparse
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grids with a ranking scheme for each uncertain input (dimension). Each
dimension initially starts with a zeroth-order quadrature rule. Follow-
ing this, the most effective dimensions are identified and successively
refined to high-order quadratures in an iterative manner, while keeping
the unimportant inputs at low-order quadratures. A brief overview of
the dimension-adaptive approach is given here. However, for more
details, the reader is referred to the tutorial of Edeling [40] and other
works [34,38,41].

For the dimension-adaptive scheme, the stochastic collocation ex-
pansion is extended to a linear combination of separate tensor products
of 1D Lagrange polynomials. Here, each tensor product can be rep-
resented by a quadrature-order multi-index, given by 𝐥 = (𝑙1,… , 𝑙𝑑 ),
where 𝑙𝑖 is the quadrature order associated with the 𝑖th input. For
example, in 2D, the multi-index 𝐥 = (2, 1) assigns second and first-order
quadrature rules to the first and second inputs, respectively. Let 𝛬 be
the set containing all currently selected quadrature-order multi-indices.
Initially, a zeroth-order quadrature rule is applied to all inputs, so that
the initial set of multi-indices is 𝛬0 = {(0,… , 0)}. At each iteration
of the dimension-adaptive scheme, a new multi-index is added to the
set according to a chosen ranking metric designed to identify the most
important inputs. However, a given multi-index is only admissible if all
of its backward neighbours – defined by {𝐥−𝐞𝑖 ∣ 𝑙𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑑}, where
𝐞𝑖 is the elementary basis vector for the 𝑖th input – are in the current
multi-index set. Referring back to the 2D example, assuming the current
multi-index set is 𝛬 = {(0, 0), (1, 0)}, then the set of admissible forward
neighbours is 𝑀 = {(0, 1), (2, 0)}.

To adaptively refine along each input dimension, a look-ahead step
is performed to select the new multi-index that is to be added to the
multi-index set. This requires drawing samples from all of the new
quadrature collocation points associated with each admissible forward
neighbour of the current multi-index set. After the samples are drawn,
each admissible forward neighbour is ranked according to a chosen
metric. This work follows Edeling et al. [34] and adopts the hierarchical
surplus error, which is defined for each admissible forward neighbour
as the difference between the code output at the new sample locations
associated with that forward neighbour and the current polynomial
approximation at those same sample locations. This can be thought of
as a measure of the accuracy of the current polynomial approximation
and at each iteration the admissible forward neighbour with the largest
surplus error is included in the new multi-index set. After adding the
new multi-index to the set, this may cause new forward neighbours to
become admissible, and the cycle repeats until a user-defined stopping
criterion is met.

The polynomial interpolation given by Eq. (3) must be modified to
work with the dimension-adaptive algorithm, since each index within
the index set 𝛬 constitutes a separate tensor product of 1D quadrature
rules [34,40]:

𝑞(𝝃) ≈
∑

𝐥∈𝛬
𝑐𝐥

𝑚𝑙1
∑

𝑗1=1
⋯

𝑚𝑙𝑑
∑

𝑗𝑑=1
𝑞
(

𝜉(𝑗1)1 ,… , 𝜉(𝑗𝑑 )𝑑

)

𝐿(𝑗1)
1 ⊗⋯⊗𝐿(𝑗𝑑 )

𝑑 (7)

where 𝑚𝑙𝑖 is the number of points generated by a 1D quadrature rule
of order 𝑙𝑖, and the coefficients 𝑐𝐥 are given by [38]:

𝑐𝐥 =
1
∑

𝑧1=0
⋯

1
∑

𝑧𝑑=0
(−1)‖𝐳‖1𝜒 (𝐥+𝐳) (8)

where 𝐳 = (𝑧1,… , 𝑧𝑑 ) and:

𝜒 (𝐥) =

⎧

⎪

⎨

⎪

⎩

1 if 𝐥 ∈ 𝛬

0 otherwise
(9)

Note that the statistical moments and Sobol indices are computed
slightly differently in the dimension-adaptive scheme, compared with
the tensor grid approach described in the previous section. Here, fol-
4

lowing previous works [34,42,43], the adaptive stochastic collocation
expansion is transformed into a polynomial chaos expansion to facili-
tate the calculation of these quantities. For more details, the reader is
referred to Buzzard [42], Jakeman et al. [43], Edeling et al. [34] and
Edeling [40].

It is important to highlight that the choice of quadrature rule can
have a large impact on the number of samples required. This work
adopts the Clenshaw-Curtis quadrature rule for the dimension-adaptive
scheme since it exhibits similar performance to Gaussian quadrature
in terms of interpolation accuracy, while also offering the advantage
of being nested [44]. This is a highly desirable property as it ensures
that the sample points of a given quadrature order contain all the
points generated by the same rule at all lower orders. As a result, many
points overlap when taking linear combinations of tensor products built
from nested 1D rules of different orders, thus leading to an efficient
sparse sampling strategy. When combined with the dimension-adaptive
scheme described above, this enables the study of high-dimensional
problems beyond what is currently achievable with the full tensor
grid approach. As an example, the reader is referred to Edeling et al.
[34], where this method is applied to an epidemiological model with a
19-dimensional input space.

An illustration of the dimension-adaptive algorithm for a generic
(example) 2D problem is given in Fig. 1. The initial index set is given
by 𝛬0 = {(0, 0)}, for which the set of admissible forward neighbours
is 𝑀0 = {(1, 0), (0, 1)}. To select which admissible forward neighbour
should be included in the index set at the next iteration, the hierarchical
surplus error must be calculated for each admissible forward neighbour.
This requires drawing all new and unique samples associated with
the admissible forward neighbours (given by the orange circles in the
bottom row of Fig. 1). Once the hierarchical surplus has been calculated
for each admissible forward neighbour, the one with the largest error
is added to the index set. In this case, suppose the new index set
becomes 𝛬1 = {(0, 0), (1, 0)}. This leads to a new admissible forward
neighbour set 𝑀1 = {(0, 1), (2, 0)}, which requires additional model
evaluations at the new sample locations associated with the new multi-
index. However, as can be seen from the bottom row of Fig. 1(b),
some of the new sample locations overlap with previously sampled
locations (due to the nested quadrature rule). Therefore, only two
additional model evaluations are required at this iteration. Following
this, the algorithm repeats for a number of iterations until a user-
defined stopping criterion is met. Note that in the third iteration, with
𝛬3 = {(0, 0), (1, 0), (2, 0), (0, 1)}, the set of admissible forward neighbours
is given by 𝑀3 = {(3, 0), (0, 2), (1, 1)}. This contains a cross-coupling
multi-index, given by 𝑙 = (1, 1), which will capture any variance
associated with high-order cross-coupling between the two inputs.

3. Simulation setup

This work focusses on a canonical turbulent channel flow at a target
friction Reynolds number of 𝑅𝑒𝜏 = 180, as shown in Fig. 2. The
streamwise, wall-normal, and spanwise directions are denoted by 𝑥, 𝑦,
and 𝑧, respectively. Equivalently, 𝑢, 𝑣, and 𝑤 denote the instantaneous
velocity components in the three spatial directions, each of which can
be decomposed into a time-averaged (𝑢) and fluctuating component
(𝑢′), such that 𝑢 = 𝑢 + 𝑢′. Note that in the following sections all
quantities are non-dimensionalised with respect to the channel half-
height (𝛿). However, where it is more convenient to use inner-scaled
quantities (denoted by the plus superscript notation), these are non-
dimensionalised with respect to the target friction velocity (𝑢𝜏 =
180𝜈∕𝛿) and friction length (𝛿𝜏 = 𝜈∕𝑢𝜏 ). Furthermore, an additional
time scale (denoted by the star superscript notation) is also defined
(𝑡∗ = 𝑡𝑢𝜏∕𝛿).

The boundary conditions are composed of periodic conditions in
the streamwise and spanwise directions and a no-slip condition on the
top and bottom walls. The mesh is uniformly spaced in the streamwise
and spanwise directions, with non-uniform spacing in the wall-normal
direction to properly resolve the near-wall effects. This is achieved
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Fig. 1. Sparse-grid quadrature order (top) and sample locations (bottom) for an illustrative 2D problem using the dimension-adaptive sampling approach. Note that this is just an
example illustration and the exact sequence will be dependent on the specific problem and algorithmic settings.
Fig. 2. Illustrative snapshot of the turbulent channel flow case.

via a carefully designed mapping function that preserves the strict
physical/spectral equivalence of the discretisation scheme, while also
avoiding an expensive convolution in spectral space when solving the
PPE (see Laizet and Lamballais [22] for more details). For all cases,
the mesh resolution at the wall was chosen to be 𝛥𝑦+𝑤 ≈ 0.5 to ensure
that the turbulence at the wall is fully resolved. The flow is initialised
to a laminar Poiseuille solution through the entire domain, and is
subsequently driven by a dynamically-adjusted body force to preserve
a constant bulk flow rate (𝑢𝑏) throughout the entire simulation. The
kinematic viscosity is set to match a bulk Reynolds number of 𝑅𝑒𝑏 =
𝑢𝑏2𝛿∕𝜈 = 5600, which has been empirically shown to lead to a friction
Reynolds number of approximately 𝑅𝑒𝜏 ≈ 180 [45]. To accelerate the
transition to turbulence, an initial noise level of 12.5% is prescribed on
the velocity field, in addition to a rotational forcing which is applied
until 𝑡∗ = 1 (𝑡 ≈ 23.3). After this, the flow is allowed to develop until
𝑡∗ = 10 (𝑡 ≈ 233.3) before the recording of the statistics begins. For
the analysis, the main QOIs are the measured friction Reynolds number
as well as cross-channel profiles of the first and second-order velocity
moments, all of which are averaged in time as well as along the two
homogeneous (streamwise and spanwise) directions.
5

The main sources of uncertainty/variability that should be consid-
ered for this specific case and configuration are:

• Domain Size: the length of the domain in the two periodic
directions (streamwise and spanwise).

• Parameter Uncertainty: the bulk Reynolds number (i.e. kine-
matic viscosity) required to achieve the target friction Reynolds
number.

• Spatial Discretisation: including both the discretisation scheme
and mesh resolution.

• Temporal Discretisation: including both the discretisation
scheme and time step size.

• Statistical Uncertainty: due to the finite sampling time (con-
trolled by specifying the length of time over which the statistics
are time-averaged).

As mentioned above, the present work neglects the uncertainty as-
sociated with the kinematic viscosity by selecting an empirical value
obtained from previous works. Furthermore, to reduce the complexity
of the present study, the effects of the spatial and temporal discretisa-
tion schemes are neglected. For the mesh resolution, the wall-normal
stretching in Incompact3d is typically controlled by the number of
mesh points in the wall-normal direction (𝑁𝑦) and a dilation param-
eter (𝛽). For practical purposes, in this work the wall-normal mesh
resolution is instead parametrised in terms of the mesh spacing at the
wall (𝛥𝑦+𝑤) and at the centre of the channel (𝛥𝑦+𝑐 ). As already stated
above, the mesh resolution at the wall is chosen to be 𝛥𝑦+𝑤 ≈ 0.5 to
ensure that the near-wall effects are fully resolved. Therefore, in this
work 𝛥𝑦+𝑐 is treated as the uncertain parameter for the wall-normal
mesh resolution. Accordingly, for each individual case, 𝑁𝑦 and 𝛽 are
set in order to match the desired 𝛥𝑦+𝑐 while also ensuring 𝛥𝑦+𝑤 ≈
0.5. Finally, the statistical uncertainty is reformulated in terms of the
length of time over which the statistics are time-averaged. Statistical
uncertainty is a form of aleatoric uncertainty and is therefore typically
treated differently to the other types of (epistemic) uncertainty, either
through ensembles [46] or by direct estimation [17]. Since scale-
resolving simulations of turbulent flows typically control this type of
uncertainty by increasing the length of time over which the statistics
are time-averaged, the present work treats this user-defined parameter
as a proxy for the statistical uncertainty. This simplifies the problem
by allowing each source of uncertainty to be treated in the same
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Fig. 3. Uncertain input space and sample locations for Campaign I. The sample scheme
is constructed via a tensor product of fourth-order 1D Gauss–Legendre quadrature
points.

way (via the stochastic collocation expansion). Note that, due to the
fact the QOIs are spatially-averaged in both homogeneous directions,
in addition to the time-averaging, the statistical uncertainty in the
present setup is expected to be small. Therefore, the effect of this subtle
distinction in the treatment of the statistical uncertainty is expected to
be negligible.

After the above simplifications, the remaining sources of uncertainty
are the effects of domain size (two directions), mesh resolution (three
directions), time step size, and the length of time over which the
statistics are time-averaged. Even with the above simplifications, the
size of the UQ problem is still too large to be practically feasible.
Therefore, the present work splits the sources of uncertainty into two
groups and performs a separate UQ campaign for each group. The
first campaign focusses on just the domain size, whereas the second
campaign focusses on the remaining numerical parameters.

3.1. Campaign I: Domain size

The aim of the first campaign is to investigate the effect of the
domain size on the DNS of a turbulent channel flow. Specifically, the
lengths of the domain along the two periodic directions – streamwise
(𝐿𝑥) and spanwise (𝐿𝑧) – are selected as the uncertain inputs. The case
is set up as described in the introduction to Section 3. The ranges for
the two inputs are chosen based on previous works. These are given
by 𝐿𝑥 ∈ [2, 24] and 𝐿𝑧 ∈ [1, 12], which covers most of the previously
elected values in the literature for this Reynolds number, as shown
n Table 1. Following Rezaeiravesh et al. [21], uniform probability
istributions are applied to each of the two inputs and a tensor grid
f fourth-order 1D Gauss–Legendre quadrature points is constructed to
ample the input space. This results in a total of 52 = 25 separate DNS,
s shown in Fig. 3. All other parameters are fixed throughout the UQ
ampaign, as shown in Table 2, and are chosen by balancing accuracy
ith the cost of the campaign. Note that for each simulation it was
ecessary to slightly adjust the streamwise and spanwise mesh spacing
𝛥𝑥+ and 𝛥𝑧+) to exactly match the required lengths (𝐿𝑥 and 𝐿𝑧) while
till maintaining an integer number of mesh points.

.2. Campaign II: Numerical parameters

The aim of the second campaign is to investigate the effect of
arious numerical parameters – mesh resolution in each direction (𝛥𝑥+,

𝛥𝑦+𝑐 , and 𝛥𝑧+), time step size (𝛥𝑡∗), and the length of time the statistics
∗

6

re collected for (𝑡𝑠𝑡𝑎𝑡) – on the DNS of a turbulent channel flow. Note
Table 1
Ranges for the uncertain inputs in Campaign I. For comparison, equivalent values from
selected previous works are also shown.

Lx Lz

Present 2–24 1–12
Kim et al. [45] 12.6 6.3
Moser et al. [47] 12.6 4.2
Oliver et al. [17] 12.6–37.7 6.3–12.6
Vreman and Kuerten [48] 12.6 4.2
Lee and Moser [3] 25.1 9.4

Table 2
Fixed parameters for Campaign I.

Parameter Value

𝛥𝑥+ 6
𝛥𝑦+𝑤 0.5
𝛥𝑦+𝑐 4
𝛥𝑧+ 6
𝛥𝑡∗ 1 × 10−4

𝑡∗𝑠𝑡𝑎𝑡 50

that 𝛥𝑦+𝑐 refers to the wall-normal mesh spacing at the centre of the
channel (since the mesh spacing is non-uniform in the wall-normal
direction). Like the first campaign, the case is set up as described in
Section 3 and the ranges for the uncertain inputs are selected based
on previous works in the literature, as shown in Table 3. These ranges
are given by 𝛥𝑥+ ∈ [4, 30], 𝛥𝑦+𝑐 ∈ [4, 30], 𝛥𝑧+ ∈ [4, 30], 𝛥𝑡∗ ∈
[0.25, 1.25]×10−4, and 𝑡∗𝑠𝑡𝑎𝑡 ∈ [5, 50]. Also like the first campaign, uniform
probability distributions are applied to each of the uncertain inputs and
a tensor grid of fourth-order 1D Gauss–Legendre quadrature points is
constructed to sample the input space, resulting in a total of 55 = 3125
separate DNS. All other parameters are fixed throughout the campaign
and are given in Table 4. Note that for each simulation it was necessary
to slightly adjust the streamwise and spanwise lengths (𝐿𝑥 and 𝐿𝑧)
to exactly match the required mesh spacing (𝛥𝑥+ and 𝛥𝑧+) while still
maintaining an integer number of mesh points. For the wall-normal
mesh spacing, this was set by adjusting both the number of mesh points
in the wall-normal direction (𝑁𝑦) and the stretching parameter (𝛽). For
each sample, the combination of these two parameters that led to a
wall-adjacent mesh spacing closest to the target value (𝛥𝑦+𝑤 ≈ 0.5),
while still exactly matching the target mesh spacing at the centre of
the channel, was selected.

4. Results

This section presents the results from the two main campaigns, as
well as the results from the dimension-adaptive sampling campaign.
All of the simulations were performed on either the Cirrus UK National
Tier-2 HPC service or the ARCHER2 UK national supercomputer. Cirrus
consists of 280 nodes housing two Intel Xeon E5-2695 (Broadwell) CPUs
(2 × 18 total cores @ 2.1GHz) in a dual non-uniform memory access
arrangement (NUMA). Network communication on Cirrus is via the
InfiniBand FDR interconnect, with 54.5Gbit∕s of bandwidth. ARCHER2,
on the other hand, is made up of 5860 nodes housing two AMD
EPYC 7742 CPUs (2 × 64 total cores @ 2.25GHz), with eight NUMA
regions per node. Network communication on ARCHER2 is via the HPE
Slingshot interconnect, which provides 2 × 100Gbit∕s of bidirectional
bandwidth. Owing to the nature of the present study, there is a large
variation in total execution time across all individual simulations, from
approximately 20 min to 4 days.

4.1. Campaign I: Domain size

The purpose of this section is to investigate the effect of the domain
size. As discussed in Section 3.1, this campaign consisted of 25 separate
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Fig. 4. Cross-channel profiles of first and second-order velocity moments for Campaign I. Note that the inner-scaling is with respect to the target friction velocity.
Table 3
Ranges for the uncertain inputs in Campaign II. For comparison, equivalent values from selected previous works are also shown.

𝛥x+ 𝛥y+c 𝛥z+ 𝛥t∗(×10−4) t∗stat
Present 4–30 4–30 4–30 0.25–1.25 5–50
Kim et al. [45] 12 4.4 7 – 10
Moser et al. [47] 17.7 4.4 5.9 – –
Oliver et al. [17] 6.1–27.4 2.3–10.1 3.0–12.2 3.21–12.86 48.5–2141.6
Vreman and Kuerten [48] 4.4–17.7 2.2–4.4 2.9–5.9 2.5–10 161–1300
Lee and Moser [3] 4.5 3.4 3.1 – 31.9
Table 4
Fixed parameters for Campaign II.

Parameter Value

𝐿𝑥 8
𝐿𝑧 4
𝛥𝑦+𝑤 0.5

DNS, requiring approximately 350,000 core-hours of compute time.
Fig. 4 shows the statistical moments of the cross-channel profiles for
various QOIs, where the mean is given by the solid line and the shaded
region indicates plus/minus three standard deviations. For reference,
the benchmark data of Moser et al. [47] and Lee and Moser [3] are
also shown. The mean profiles generally agree well with the benchmark
data. However, significant variance can also be observed, depending
on the QOI and wall-normal location. In particular, the streamwise
and spanwise components of the fluctuating velocity show significant
relative variance across the channel, but especially around the peaks
in the buffer layer (𝑦+ ≈ 20–25). On the other hand, the variance is
somewhat lower for the Reynolds stress and wall-normal component
of the fluctuating velocity, and is negligible for the mean streamwise
velocity.

Fig. 4 clearly demonstrates that the domain size has a significant
effect on the observed QOIs, particularly the second-order velocity
moments. Fig. 5 shows how sensitive this response is with respect to
each input, as a function of the wall-normal location. Overall, there is a
mix of behaviours. However, focussing on the streamwise and spanwise
components of the fluctuating velocity, since they exhibit the largest
relative variance, it is clear that 𝐿𝑥 dominates the variance observed in
the streamwise velocity across most of the channel height. In fact, only
at the channel centre does the sensitivity associated with 𝐿𝑧 approach
7

that of 𝐿𝑥. For the spanwise velocity, the variance is dominated by 𝐿𝑥
close to the wall. However, at approximately 𝑦+ ≈ 70 this behaviour
reverses and instead 𝐿𝑧 becomes the most influential input. Generally,
the sensitivity to high-order cross-coupling terms is low, apart from in
the mean streamwise velocity and Reynolds stress. However, it should
be noted that the variance associated with these QOIs is relatively low,
which will affect the robustness of the calculation of the Sobol indices.

Although the target friction Reynolds number in all of the simu-
lations is 𝑅𝑒𝜏 = 180, in practice this will not be achieved exactly.
Therefore, the measured friction Reynolds number is also an interesting
QOI to study. Fig. 6(a) shows the underlying surrogate model for the
measured friction Reynolds number, as a function of the two inputs.
This is constructed as part of the stochastic collocation procedure and is
built via a tensor product of Lagrange polynomials using the measured
𝑅𝑒𝜏 at the sample locations. Note that this figure cannot be used to lo-
cate the ‘correct’ region of the parameter space that will exactly match
the target Reynolds number. This is because, as discussed in Section 3,
the viscosity is set according to empirical data [45] to approximately
match the target Reynolds number. Therefore, even in the case of zero
modelling error, there is no guarantee that the measured Reynolds
number will exactly match the target. Instead, Fig. 6(a) provides useful
information about the behaviour of the measured Reynolds number
with respect to the uncertain inputs. In particular, the alignment and
spacing of the contour lines indicate the sensitivity of the measured
Reynolds number with respect to each input at a particular point in
the input space. Fig. 6(b) helps with this analysis by providing a local
sensitivity analysis, which is calculated by taking the magnitude of
the gradient of the surrogate model. Note that, to facilitate compari-
son between different inputs, the input space is normalised to a unit
square before computing the gradient. Fig. 6(b) displays regions of the
parameter space where the measured Reynolds numbers is especially
sensitive to these two inputs. Clearly, for a CFD practitioner, it would

be beneficial to choose a domain size in the upper right quadrant of
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Fig. 5. Cross-channel Sobol indices of first and second-order velocity moments for Campaign I. HO refers to high-order cross-coupling terms. Note that the inner-scaling is with
respect to the target friction velocity.
Fig. 6. Analysis of measured Reynolds number (𝑅𝑒𝜏 ) for Campaign I.
this figure (e.g. 𝐿𝑥 > 10 and 𝐿𝑧 > 7) to ensure robust results that
are insensitive to the domain size. This is an intuitive result, since
it is expected that the results of a simulation would converge as the
domain length along a periodic direction increases. Finally, Fig. 6(c)
displays the global sensitivity of the measured Reynolds number with
respect to each input. Clearly, 𝐿𝑧 is the dominant input for this QOI.
However, 𝐿𝑥 is also influential and there is also some cross-coupling.

his is supported by examining Fig. 6(a), where it can be seen that most
f the variance is with respect to 𝐿𝑧, whereas the influence from 𝐿𝑥 is

somewhat smaller.
To assess the robustness of Incompact3d for this specific setup,

Fig. 7 shows the cross-channel profiles of CVR, as given by Eq. (6),
for various QOIs. For the most part, it is clear that Incompact3d
dampens the effect of the uncertain inputs on the output QOIs. In fact,
for almost all QOIs and channel locations, the CVR is much lower than
one. The only instance where this is not true is in the Reynolds stress
close to the channel centre, where the CVR increases significantly to an
extreme value of approximately 7 (not shown). However, care should
e taken when interpreting the CVR in this region, since the mean
f the Reynolds stress approaches zero here (see Fig. 4(b)), and thus
he CV will be amplified in this region, even if the variance is low in
bsolute terms. Table 5 also shows the CVR for the measured Reynolds
umber, as well as the mean of the cross-channel CVR profiles displayed
n Fig. 7. Again, the damping effect of Incompact3d with respect to
he input uncertainty is clear. Furthermore, it can be seen that the QOIs
hat display the most variability, in addition to the Reynolds stress, are
he streamwise and spanwise components of fluctuating velocity, which
an be qualitatively confirmed by examining Fig. 4.
8

Fig. 7. Cross-channel profiles of CVR for the first and second-order velocity moments
for Campaign I. Note that the limits of the CVR axis have been clipped for clarity and
the inner-scaling is with respect to the target friction velocity.

4.2. Campaign II: Numerical parameters

The purpose of this section is to investigate the effect of the numer-
ical parameters. As discussed in Section 3.2, this campaign consisted
of 3125 separate DNS, requiring approximately 450,000 core-hours of
compute time. Fig. 8 shows the statistical moments of the cross-channel
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Table 5
Mean CVR for all QOIs for Campaign I. For this campaign the CV for the inputs is
0.489.

QOI CV CVR

𝑅𝑒𝜏 0.003 0.007
𝑢+ 0.003 0.007
−𝑢′𝑣′

+
0.033 0.069

𝑢′+𝑟𝑚𝑠 0.030 0.062
𝑣′+𝑟𝑚𝑠 0.016 0.032
𝑤′+

𝑟𝑚𝑠 0.021 0.043

profiles for various QOIs. The findings are broadly similar to Fig. 4,
with good agreement between the mean profiles and the benchmark
data. Furthermore, the variance is almost exclusively manifested in the
second-order velocity moments, with negligible variance in the mean
streamwise velocity. The main contrast with the first campaign is that
while the variance in the Reynolds stress and wall-normal fluctuating
velocity in the first campaign was relatively small, for this campaign
these QOIs display the largest variance. Again, the peak in the variance
generally occurs in the buffer layer, around 𝑦+ ≈ 20–25.

Fig. 9 shows the cross-channel Sobol indices for each uncertain
input and QOI. Again, there is a mix of behaviours. However, it is clear
that the spanwise mesh resolution (𝛥𝑧+) is the most influential input.
This is especially true close to the wall, whereas towards the centre
of the channel the streamwise mesh resolution (𝛥𝑥+) and high-order
cross-couplings become more influential. It is interesting to note that
there is almost no sensitivity associated with the time step size (𝛥𝑡∗)
r the length of time the statistics are collected for (𝑡∗𝑠𝑡𝑎𝑡). In the case
f the time step size, this can be explained by the fact that the range
or this parameter was chosen primarily based on stability constraints.
n particular, to ensure a stable solution across all sampled locations in
he input space, it was necessary to choose a range where the maximum
ime step size would still satisfy the stability requirements for the most
ighly resolved mesh. By accommodating for these extreme values it
eant the majority of the simulations in this campaign were ‘over-

esolved’ in the temporal domain. With regards to the length of time
he statistics were collected for, in addition to time-averaging, all QOIs
ere also spatially-averaged along the two homogeneous directions.
his accelerates the convergence of the statistics and is therefore the
ost likely reason why the QOIs are not especially sensitive to the
9

ength of the time-averaging window. a
Fig. 10(a) shows a 2D slice of the underlying surrogate model for
he measured friction Reynolds number, as a function of the streamwise
nd spanwise mesh resolution. These inputs were chosen since, from
ig. 9, they were deemed to be the most influential inputs with respect
o the QOIs. For this slice, the remaining inputs were set to the centre
f their respective ranges. Based on the alignment of the contour lines,
𝑧+ is clearly the dominant input responsible for the majority of the
bserved variance in the measured Reynolds number. This is perhaps
ot surprising, given that the coherent structures associated with wall-
ounded turbulence are known to align and stretch with the flow along
he streamwise direction. As a result, the mesh resolution requirements
re not as strict in the streamwise direction as they are in the spanwise
irection. Examining the spacing of the contour lines, it is clear that the
easured Reynolds number is more sensitive when 𝛥𝑧+ is large. This is

einforced in Fig. 10(b), which displays the local sensitivity by taking
he magnitude of the gradient of the surrogate model (after normalising
he input space to a unit hypercube). Similar to the previous section,
his figure can be used to determine appropriate values for the input
arameters to ensure robust results. In this case, for the spanwise mesh
esolution, it is seen that a value of 𝛥𝑧+ < 10 is necessary to minimise
he sensitivity. On the other hand, the measured Reynolds number
s generally insensitive to the streamwise mesh resolution over the
xamined range, although there is a small region of slightly increased
ensitivity at approximately 10 < 𝛥𝑥+ < 20. Finally, Fig. 10(c) displays
he global sensitivity of the measured Reynolds number with respect
o each uncertain input. Clearly, 𝛥𝑧+ dominates and is responsible for
pproximately 95% of the total variance, whereas the effect of each of
he other uncertain inputs is negligible.

Fig. 11 shows the cross-channel profiles of CVR for various QOIs.
he results are broadly similar to the first campaign. Again, it is evident
hat Incompact3d dampens the effect of the uncertain inputs on
he output QOIs. However, the CVR values are somewhat larger than
he first campaign, indicating that the uncertainty is damped to a
esser degree for this set of uncertain inputs. Table 6 also shows that,
or this campaign, the Reynolds stress and wall-normal component of
luctuating velocity exhibit the most variability, which can also be
onfirmed by examining Fig. 8.

.3. Campaign III: Dimension-adaptive sampling

While the results presented in the previous sections are interesting
nd informative, they are expensive to obtain and require significant
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Fig. 9. Cross-channel Sobol indices of first and second-order velocity moments for Campaign II. HO refers to high-order cross-coupling terms. Note that the inner-scaling is with
respect to the target friction velocity.
Fig. 10. Analysis of measured Reynolds number (𝑅𝑒𝜏 ) for Campaign II. Note that the inner-scaling is with respect to the target friction velocity.
Fig. 11. Cross-channel profiles of CVR for the first and second-order velocity moments
or Campaign II. Note that the limits of the CVR axis have been clipped for clarity and
he inner-scaling is with respect to the target friction velocity.

omputational resources. Furthermore, including even just one more
imension in the uncertain input space would make this type of analysis
ntractable. Therefore, the purpose of this section is to investigate the
otential benefits of adopting a ‘smart’ sampling strategy to reduce
he number of samples (simulations) required to perform the types of
nalyses presented in the previous sections. Specifically, the dimension-
daptive approach described in Section 2.2.2 is used to repeat the same
10
Table 6
Mean CVR for all QOIs for Campaign II. For this campaign the CV for the inputs is
0.436.

QOI CV CVR

𝑅𝑒𝜏 0.018 0.041
𝑢+ 0.007 0.015
−𝑢′𝑣′

+
0.112 0.257

𝑢′+𝑟𝑚𝑠 0.025 0.057
𝑣′+𝑟𝑚𝑠 0.037 0.085
𝑤′+

𝑟𝑚𝑠 0.021 0.049

study conducted in the second campaign. The setup for this campaign
is therefore the same as Campaign II, which has five uncertain inputs,
given by the mesh resolution in each direction, the time step size, and
the length of time the statistics are collected for. Based on the results
from the second campaign (Section 4.2), this problem should be ideally
suited to the dimension-adaptive approach, since the sensitivities of
the QOIs are essentially dominated by just one of the inputs (the
spanwise mesh resolution). Therefore, the dimension-adaptive scheme
should identify this input as the most important and prioritise resources
towards resolving its effect.

Table 7 displays an overview of the progression of the dimension-
adaptive campaign at each iteration. Here, the measured friction
Reynolds number is selected as the QOI to direct the sampler at each
iteration. As described in Section 2.2.2, this is done by including the
admissible forward neighbour with the largest surplus error into the
accepted set of quadrature orders at each iteration. The campaign is
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Fig. 12. Summary of Campaign III progression for each iteration.
Fig. 13. 2D projection of uncertain input space and sample locations for each pair of inputs in Campaign III. The sample scheme is constructed by successively refining along
important dimensions via nested anisotropic sparse grids of varying quadrature orders. Histograms for each input are shown along the diagonal. Note that the inner-scaling is with
respect to the target friction velocity.
run for seven iterations, requiring 37 separate DNS, at which point
the adaptation error has clearly plateaued. Compared to the full tensor
grid approach in Campaign II, which required 3125 samples, this is a
reduction of approximately two orders of magnitude. Furthermore, the
actual computational cost was approximately 14,000 core-hours, which
is just over thirty times smaller than the full tensor grid approach. That
being said, this does not necessarily translate into equivalent savings
11
in total execution time. This is because, while each sample in the
tensor grid approach can be computed simultaneously, each iteration of
the dimension-adaptive scheme is sequential (although the simulations
within an iteration can be executed in parallel). Depending on available
HPC resources, if the entire tensor grid campaign can be executed
simultaneously, then this could lead to a faster total execution time
compared to the dimension-adaptive approach. Having said that, this
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Fig. 14. Cross-channel profiles of first and second-order velocity moments for Campaign III. Note that the inner-scaling is with respect to the target friction velocity.
Fig. 15. Cross-channel Sobol indices of first and second-order velocity moments for Campaign III. HO refers to high-order cross-coupling terms. Note that the inner-scaling is with
espect to the target friction velocity.
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Table 7
Overview of Campaign III progression for each iteration. The mapping of quadrature
order to each individual input is given by (𝛥𝑥+, 𝛥𝑦+𝑐 , 𝛥𝑧+, 𝛥𝑡∗, 𝑡∗𝑠𝑡𝑎𝑡).

Iteration Simulations Adaptation error Quadrature order

0 1 – (0, 0, 0, 0, 0)
1 10 5.12 (0, 0, 1, 0, 0)
2 2 0.91 (0, 0, 2, 0, 0)
3 4 0.82 (0, 0, 0, 1, 0)
4 6 1.03 (0, 0, 1, 1, 0)
5 4 0.57 (0, 0, 2, 1, 0)
6 0 0.43 (1, 0, 0, 0, 0)
7 10 1.05 (1, 0, 1, 0, 0)

is unlikely to be the case for large campaigns. Furthermore, the actual
compute cost (e.g. in core-hours) would still be significantly higher than
with the dimension-adaptive approach.
12

m

Fig. 12(a) shows the adaptation (surplus) error at each iteration.
The error reduces quite rapidly after the first iteration and then set-
tles for the remaining iterations, indicating convergence of the sam-
pling scheme. Fig. 12(b) shows the quadrature orders accepted by the
sampling scheme at each iteration. Clearly, the sampler immediately
identifies the spanwise mesh resolution (𝛥𝑧+) as the dominant input
nd dedicates most of the resources throughout the campaign towards
esolving its effect. This is in line with the findings from Section 4.2,
hich also identified 𝛥𝑧+ as the most dominant input. During the

ourse of the dimension-adaptive campaign, the sampler also dedicates
ome resources towards 𝛥𝑡∗ and 𝛥𝑥+, while completely neglecting 𝛥𝑦+

nd 𝑡∗𝑠𝑡𝑎𝑡. Again, this is in line with the findings from Section 4.2,
hich showed that the contributions from the inputs other than 𝛥𝑧+

re almost negligible. Finally, Fig. 13 provides an illustration of the
ulti-dimensional sample space by showing the 2D projection of each

ample (simulation) on each pair of input dimensions. As can be seen,
ost of the resources are dedicated towards resolving the effect of 𝛥𝑧+,
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Fig. 16. Comparison of cross-channel profiles of first and second-order velocity moments for the tensor grid and dimension-adaptive sampling schemes. Note that the inner-scaling
is with respect to the target friction velocity.
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with some resources dedicated to 𝛥𝑥+ and 𝛥𝑡∗, and no resources, other
than the initial samples, dedicated to 𝛥𝑦+ and 𝑡∗𝑠𝑡𝑎𝑡.

Fig. 14 shows the statistical moments of the cross-channel profiles
or various QOIs. The findings are very similar to Fig. 8, and support
he use of the dimension-adaptive scheme, as an alternative to the
ull tensor grid approach, for providing the same type of analysis at a
raction of cost. Overall, there is a broad agreement with the benchmark
ata. Furthermore, like the previous campaigns, most of the variance
anifests in the second-order velocity moments. This is especially

rue for the Reynolds stress and the wall-normal component of the
luctuating velocity. Fig. 15 shows the cross-channel Sobol indices for
ach uncertain input and QOI. Although there are clearly quantitative
ifferences with respect to Fig. 9, the overall trends are very similar. In
articular, 𝛥𝑧+ is the dominant input across most of the channel height,
specially close to the wall, whereas 𝛥𝑥+ becomes more dominant

towards the centre of the channel. In the tensor grid approach it was
shown that high-order cross-coupling terms were typically responsible
for the variance observed at the centre of the channel. However, this is
not the case for the dimension-adaptive scheme. A possible explanation
for this is that only one iteration (the final iteration) attempts to resolve
the cross-coupling effect between 𝛥𝑥+ and 𝛥𝑧+. Therefore, it is possible
that more iterations are required to properly capture this effect. It is
also worth highlighting that it is the surplus error in the measured
friction Reynolds number that directs the sampler at each iteration.
Since the friction velocity is computed at the wall, then it is possible
that the sampler is favouring choices that resolve the effects at the wall
more than the effects towards the centre of the channel.

To properly assess the validity of the dimension-adaptive scheme,
Fig. 16 provides a quantitative comparison of the cross-channel sta-
tistical moments (mean and variance), with respect to the tensor grid
approach, for each QOI. For the mean profiles, the agreement is ex-
cellent and almost indistinguishable across all QOIs and wall-normal
locations. On the other hand, the agreement in the variance is mixed
and depends heavily on the QOI and wall-normal location. Specifically,
the agreement is excellent for the Reynolds stress and wall-normal
component of the fluctuating velocity. Furthermore, it is very good
for the mean streamwise velocity, with some discrepancy in certain
locations across the channel height. However, there are notable quanti-
tative differences across most the channel height for the streamwise and
spanwise components of the fluctuating velocity, although the overall
13

trends are somewhat similar. The reason for these mixed results across a
Fig. 17. Comparison of global sensitivity analysis of 𝑅𝑒𝜏 for the tensor grid and
dimension-adaptive sampling schemes.

different QOIs is an interesting finding, and is left for future work.
Finally, Fig. 17 compares the Sobol indices for each uncertain input
with respect to the measured Reynolds number. The values are very
similar between the tensor grid and dimension-adaptive schemes and
show that the sensitivity is dominated by 𝛥𝑧+, while the effect from
he remaining inputs is negligible.

. Summary & conclusions

This work presents a systematic forward UQ study and sensitivity
nalysis for the DNS of a canonical turbulent channel flow at a friction
eynolds number of 𝑅𝑒𝜏 = 180. The DNS is computed using the

high-order compact finite difference solver Incompact3d, whereas
he UQ analysis is performed using stochastic collocation. The overall
orkflow is handled by EasyVVUQ, which automatically manages the
reprocessing, execution and postprocessing of the simulation data
n HPC systems. Three separate UQ campaigns are conducted. The
irst campaign investigates the effect of the domain size along the
wo periodic directions (𝐿𝑥 and 𝐿𝑧). The second campaign, on the
ther hand, investigates the effect of various numerical parameters,
ncluding the mesh resolution in each direction (𝛥𝑥+, 𝛥𝑦+ and 𝛥𝑧+),

∗
s well as the time step size (𝛥𝑡 ) and the length of time the statistics
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are collected for (𝑡∗𝑠𝑡𝑎𝑡). For the first two campaigns, the input space
is sampled by constructing a tensor grid of fourth-order 1D Gauss–
Legendre quadrature points, resulting in a total of 25 and 3125 separate
DNS for the first and second campaigns, respectively. Finally, the third
campaign reproduces the second campaign, but adopts a dimension-
adaptive sparse-grid sampling strategy to drastically reduce the number
of samples (simulations) required.

The results for the first campaign show that the variance associated
with the domain size mainly manifests in the second-order velocity
moments, especially the streamwise and spanwise components of the
fluctuating velocity. Furthermore, the sensitivity to a given input is
highly dependent on the particular QOI and wall-normal location. For
the second campaign, again, the variance is mainly manifested in the
second-order velocity moments. However, this time it is the Reynolds
stress and the wall-normal component of the fluctuating velocity that
exhibit the most variance. This sensitivity is found to be mostly affected
by the spanwise mesh resolution, especially in the region close to the
wall. However, some variation in the relative influence of each input
can be observed across the channel height, depending on the particular
QOI.

The results for the third campaign show that it is possible to repro-
duce the analysis from the second campaign using a ‘smart’ sampling
strategy that significantly reduces the number of required samples. By
adopting a dimension-adaptive approach that automatically determines
the most influential inputs and prioritises resources towards resolving
their effect, the number of required samples (simulations) was reduced
by two orders of magnitude, leading to significant computational sav-
ings. A comparison of the statistical moments and sensitivity indices
show good agreement between the tensor grid and dimension-adaptive
approaches, with some slight quantitative discrepancies in the variance,
depending on the QOI and wall-normal location. This demonstrates
the potential of the dimension-adaptive approach as an affordable
alternative to full tensor grid sampling that can be readily incorporated
into CFD workflows, which will ultimately enable more UQ studies
of scale-resolving simulations. However, it is important to highlight
that this approach would not provide any benefit over the tensor grid
approach for problems where the influence of each input parameter is
approximately equal. Nevertheless, this is rarely the case in practice.

The restriction to a single Reynolds number is one of the main
limitations of the present study. Nevertheless, it was a necessary one in
order to ensure that the objectives of this work were computationally
feasible. Furthermore, previous works have shown that propagated
uncertainties and sensitivities are approximately invariant over small-
moderate Reynolds numbers for these types of flows [21]. Therefore,
it is expected that the conclusions of this work can be extrapolated
to a (limited) range of flow regimes beyond what is considered here.
However, further work is required to verify this assumption. A second
limitation of this work is the absence of a rigorous and systematic
analysis of the performance of the dimension-adaptive scheme. For
example, in Section 4.3, the campaign is stopped after seven iterations
based on the behaviour of the adaptation error. While this number of
iterations is shown to provide good agreement with the full tensor grid
approach for this setup, a more detailed investigation into the effects
of the stopping criteria, the choice of QOI used to guide the adaptive
sampling, and the overall convergence behaviour, among others, would
be useful. However, since the purpose of this work is to demonstrate
the potential of the dimension-adaptive approach for scale-resolving
simulations of turbulent flows, this type of analysis is beyond the scope
of the present work, as it would require its own separate study.

There are several potential directions for future research. Firstly,
the logical next step following this work is to combine the input
spaces of the first and second campaigns. This would allow any cross-
coupling effects between the domain size and numerical parameters to
be properly captured. This type of analysis would only be feasible using
the dimension-adaptive scheme, since the full tensor grid approach
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would require 5 = 78125 separate DNS. Secondly, extending this work
to different flow problems – such as different geometries (e.g. turbulent
boundary layer) and flow conditions (e.g. Reynolds number) – would
provide further insights into the UQ and sensitivity analysis of DNS.
Finally, it would also be informative to investigate and compare other
dimensionality-reducing strategies for UQ, such as the deep active-
subspace method [49] (also available in EasyVVUQ), which would
further enable high-dimensional UQ studies of scale-resolving CFD.
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